Альтернативные источники примеры: Нетрадиционные ⚠️ источники энергии: определение, примеры

Содержание

Использование альтернативных источников энергии – АСГАРД-Сервис

В связи с неумолимым уменьшением запасов и достаточно высокой стоимостью традиционных источников энергии: нефти, газа и угля, а также образованием парникового эффекта из-за их использования, происходят изменения в энергетической политике. Все большему количеству стран приходится вести исследования, связанные с альтернативными источниками энергии.

Что называют альтернативными источниками энергии?

Альтернативными источниками энергии называют вид экологически чистых, возобновляемых ресурсов, преобразование которых приводит к получению человеком электрической и тепловой энергии, используемой для собственных нужд. Данные источники представлены:

  • энергией ветра и солнца,
  • водами рек и морей,
  • теплом поверхности земли,
  • а также биотопливом, для получения которого используют биологическую массу растительного и животного происхождения.

О видах альтернативной энергетики

В соответствии с источником энергии, преобразование которого способствует получению человеком электрической и тепловой энергии, используемой в повседневном быту, существует классификация альтернативной энергетики. Виды альтернативной энергетики соответствуют способам ее генерации и типам установок, используемых для данных целей.

Энергия солнца

В основе солнечной энергетики лежит преобразование солнечной энергии, способствующее получению электрической и тепловой энергии. Электрическую энергию получают благодаря физическим процессам, происходящим в полупроводниках, на которые воздействуют солнечные лучи. Тепловую энергию получают благодаря

определенным свойствам, характерным жидкостям и газам.

Генерацию электрической энергии осуществляют с помощью комплектования солнечных электростанций, основанных на солнечных батареях (панелях), изготавливаемых с использованием кристаллов кремния. Тепловые установки основаны на солнечных коллекторах, где происходит образование тепловой энергии теплоносителя из энергии солнца. Уровень мощности данных установок соответствует количеству и мощности конкретных устройств, которые установлены на солнечных и тепловых станциях.

Энергия ветра

В основе ветровой энергетики лежит процесс преобразования кинетической энергии, имеющейся у воздушных масс, с образованием электрической энергии, используемой потребителями. Ветровые установки основаны на функционировании ветровых генераторов.

Различные модели ветровых генераторов отличаются:
  • техническими параметрами,
  • габаритными размерами,
  • конструкцией: с вертикальной или горизонтальной осью вращения, различными типами и числом лопастей,
  • местом расположения (наземным, морским и т.д.).

Сила воды

В основе гидроэнергетики лежит преобразование кинетической энергии, которой обладают водные массы, в электроэнергию, используемую людьми для собственных нужд. Перечень объектов данного типа представлен гидроэлектростанциями разной мощности, установку которых осуществляют на различных водных объектах. Такие установки подвергаются естественному течению воды либо создаваемым плотинам. При воздействии воды на лопасти турбин происходит выработка электрического тока. В основе гидроэлектростанций находятся гидротурбины.

Электрическую энергию получают еще одним способом. Энергия воды преобразуется благодаря использованию энергии приливов, для чего возводят приливные станции. Такие установки функционируют благодаря использованию кинетической энергии, возникающей у морской воды в периоды, связанные с приливами и отливами, происходящими в океанах и морях при воздействии объектов, входящих в солнечную систему.

Тепло земли

В основе геотермальной энергетики лежит преобразование тепла, которое излучает земная поверхность в тех местах, где происходит выброс геотермальных вод (на сейсмически опасных территориях), так и в других земных регионах. Воспользоваться энергией геотермальных вод можно благодаря использованию специальных установок, в которых происходит преобразование внутреннего тепла земли с образованием тепловой и электрической энергии.

Тепловые насосы предназначены для получения тепла из земной поверхности в любом месте их расположения. Они функционируют на свойствах, характерных жидкостям и газам, а также в соответствии с законами термодинамики. Модели тепловых насосов различаются мощностью и своей конструкцией, связанной с первичным источником энергии, определяющим их тип. Применяются следующие системы тепловых насосов:

  • «воздух-вода» и «грунт-воздух»,
  • «грунт-вода» и «вода-вода»,
  • «вода-воздух» и «воздух-воздух»,
  • «фреон-вода» и «фреон-воздух».

Биотопливо

Биотопливо бывает различных видов, различающихся способами получения, агрегатным состоянием (жидким, твердым, газообразным), видами использования. Все разновидности биотоплива объединены тем, что их производство основано на использовании органических продуктов, переработка которых приводит к получению электрической и тепловой энергии. Биотопливо твердых видов  состоит из дров, топливных брикетов или пеллет, газообразных – из биогаза и биоводорода, а жидких – из биоэтанола, биометанола, биобутанола, диметилового эфира и биодизеля.

Преимущества и недостатки использования

Каждому конкретному источнику энергии, независимо от его типа, традиционного или альтернативного, характерен спектр свойственных и относящихся конкретно к нему достоинств и недостатков использования. Помимо этого, каждая группа энергоресурсов характеризуется общими плюсами и минусами.

Если говорить об альтернативных источниках энергии, то среди преимуществ следует упомянуть о:

  • Возобновляемости альтернативных источников энергии;
  • Экологической безопасности;
  • Доступности и возможности использования в широких сферах применения;
  • Низкой себестоимости энергии, образуемой после преобразования.

Недостатки использования состоят в:

  • Высокой стоимости оборудования и значительных материальных затратах на этапах, связанных со строительством и монтажом;
  • Низком КПД установок;
  • Зависимости от внешних факторов: погодных условий, силы ветра и т.д.;
  • Относительно небольшой установленной мощности генерирующих установок, кроме гидроэлектростанций.

Использование альтернативных источников энергии в России

Наша страна, наряду со многими технически развитыми странами мира, немало внимания уделяет альтернативным источникам энергии. Такое внимание связано с наличием больших территорий, не оборудованных до настоящего времени централизованными источниками энергии, а также с тенденцией, свойственной всему миру, заключающейся в борьбе за экологию на планете и экономии традиционного топлива. Разные регионы страны занялись развитием различных видов альтернативной энергетики.

Солнечная энергетика

Максимальное распространение солнечных электростанций характерно различным слоям населения, в качестве альтернативного или резервного источника тепловой и электрической энергии. Можно также утверждать о промышленных масштабах развития данного вида энергетики на территории нашей страны.

Общий уровень установленной мощности солнечных электростанций достиг более 400,0 МВт. Среди наиболее крупных упомянем об Орской им. А. А. Влазнева (установленная мощность 40,0 МВт), расположенной в Оренбургской области; Бурибаевской (мощность 20,0 МВт) и Бугульчанской (мощность 15,0 МВт), расположенных в Республике Башкортостан. На территории полуострова Крым функционирует свыше десятка солнечных электростанций, мощность каждой из которых составляет 20,0 МВт. Сейчас разрабатывается проектная документация и ведется строительство на разных стадиях еще около 50 объектов, связанных с солнечной генерацией. Они расположены в Сибири, на Дальнем Востоке, в южных и центральных областях страны. Проектируемые и строящиеся объекты получат общую мощность свыше 850,0 МВт.

Ветровая энергетика

В нашей стране функционирует много ветровых энергетических установок, которые позволяют получать электрическую энергию промышленными масштабами. Правда, доля их мощности в энергетической системе существенно ниже по сравнению с солнечными электростанциями. Общий уровень установленной мощности ветровых генераторов чуть выше 100,0 МВт. Среди наиболее мощных упомянем о Зеленоградской ветровой установке (мощность 5,1 МВт), расположенной в Калининградской области; Останинской (25,0 МВт), Тарханкутской (22,0 МВт) и Сакской (20,0 МВт) – на территории полуострова Крым. Сейчас продолжается проектирование и строительство еще 22 ветровых энергетических установок, общая мощность которых превышает 2500,0 МВт.

Гидроэнергетика

Данная разновидность альтернативной энергетики наиболее распространена на российской территории. Энергия, вырабатываемая на ГЭС, установленных на реках в различных отечественных регионах, достигает свыше 20,0%, если суммировать общую генерацию всей российской энергосистемы. По статистике, соответствующей началу 2017 года, суммарный уровень установленной мощности электростанций достигал 48085,94 МВт. Данная мощность вырабатывалась 191 объектом генерации, отличающимся конструкцией и мощностью.

В нашей стране производят электрическую энергию благодаря использованию энергии приливов. Отметим Кислогубскую приливную электростанцию, работающую в Мурманской области свыше 60 лет. Ее реконструировали в 2007 году, увеличив установленную мощность до 1,7 МВт. Сейчас разрабатывается экономическое обоснование и проектная документация для строительства аналогичных станций в Белом (Мезенской ПЭС) и Охотском (Пенжинской и Тугурской ПЭС) морях.

Геотермальная энергетика

Энергию недр, которыми богата наша планета, широко используют в странах, характеризующихся вулканической деятельностью. Для нашей страны данный вид энергетики, в связи с ее особенностями, характерен дальневосточному региону. Дальний Восток оборудован пятью геотермальными электрическими станциями, установленная мощность которых достигает 80,1 МВт. Три станции располагаются на территории Камчатки (Верхне-Мунтовская, Паужетская и Мутновская), Менделеевская станция расположена на острове Кунашир, Океанская станция расположена на острове Итуруп.

Применение биотоплива

Распространение данного вида энергоресурсов не так широко, если сравнивать с традиционными видами топлива или гидроэнергетикой. Отметим развитие в нашей стране лесной и деревообрабатывающей промышленности, а также выращивание сельскохозяйственных культур на больших территориях, чем обусловлено пристальное внимание к этому виду энергетики.

В последнее время активизировалось строительство заводов, занимающихся переработкой отходов древесины и специализирующихся на изготовлении топливных брикетов и гранул (пеллет). Использование брикетов и пеллет эффективно в виде топлива в различных типах котлов. Благодаря их сжиганию происходит выработка тепловой и электрической энергии.

Отходы сельскохозяйственного производства используются для изготовления биогаза и жидкого топлива для дизельных установок и двигателей, где происходит их сжигание, способствующее производству электрической и тепловой энергии. Распространение данного вида топлива пока не настолько широко на территории нашей страны, но можно утверждать о достаточно обширных и успешных перспективах его развития.

Использование в частных домах

При отоплении загородных домов или дач, а также при их электроснабжении можно вполне успешно воспользоваться альтернативными источниками энергии. Возможность использования целиком связана с регионом проживания пользователей и местом расположения объектов, потребляющих топливо. Способность выработки электрического тока с помощью солнечных станций и ветровых установок напрямую связана с активностью солнца и скоростью ветра на участке их расположения, а также с прочими погодными явлениями, характеризующими данный регион.

Построить микро ГЭС можно, если объект потребления расположен рядом с рекой или иным водоемом. Геотермальную станцию можно построить рядом с геотермальными водами, расположенными близко к земной поверхности. Использование биотоплива (продукции отходов деревообработки, дров) возможно в тех регионах, которые богаты лесами, имеют развитую промышленность, относящуюся к данному направлению. Воспользоваться биогазом и жидким топливом можно при наличии больших территорий, предназначенных для выращивания сельскохозяйственных культур. Это способствует созданию больших запасов биомассы, которая используется при производстве данных видов топлива.

Возможно ли в домашней обстановке сделать собственными руками оборудование для получения энергии?

Если вы обладаете свободным временем, желанием, умением работать с ручными инструментами, у вас есть возможность для создания установок и последующего использования альтернативных источников для собственных нужд, чтобы обеспечивать себя тепловой и электрической энергией.

Аналогичная ситуация со всеми перечисленными выше видами альтернативной энергетики.

Для оснащения солнечной электростанции можно заняться самостоятельным изготовлением солнечных батарей, с использованием фотоэлементов заводского производства, а также осуществить сборку контроллера заряда и инвертора, являющихся элементами в таких установках.

Для ветровой установки, как и для солнечной станции, возможно изготовление электронных устройств (например, инвертора), сборка которых достаточно проста. Вы можете воспользоваться существующими электрическими схемами и элементами заводского производства. Изготовление самого важного элемента – ветрогенератора – возможно из доступных материалов и запчастей.

Возможность изготовления и монтажа микро ГЭС есть у каждого, при наличии реки или водоема, соответствующего сооружению плотины. Особенности конструкции и вида гидротурбины соответствуют типу водоема и рельефу местности.

Возможность создания биогазовой установки есть у каждого сельского жителя. Необходимо лишь обладать достаточным количеством биомассы и температурой, соответствующей условиям процесса брожения.

Альтернативная энергетика

Почему нужна альтернативная энергетика

Рост потребления энергии в мире

Мировое потребление энергии растет. Хотя традиционные производства и сервисы становятся все более энергоэффективными, рост населения планеты и появление новых сервисов приводит к увеличению общего энергопотребления. В 2015 году мировое энергопотребление составило 20,76 трлн кВт*ч, по данным Международного энергетического агентства, прогноз на 2030 год — 33,4 трлн кВт*ч, а к 2050 — до 41,3 трлн кВт*ч.

На «цифровую экономику» приходится примерно десятая часть глобального потребления энергии, но эта доля возрастает. Например, пару лет назад майнинг криптовалют был уделом гиков, а сейчас это направление в глобальном масштабе потребляет больше энергии, чем многие страны. Например, майнинг Bitcoin «съедает» за год 14,6 ТВт*ч, а потребление Таджикистана pа год составляет всего лишь 13 ТВт*ч, по данным DigiEconomist, а ведь есть еще и другие криптовалюты, например, на майнинг Ethereum за год уходит около 5 ТВт*ч[1].

Миру нужно больше энергии, причем, по возможности, за меньшие деньги. Чтобы обеспечить растущие глобальные запросы, энергетике нужны качественные изменения. Использование восстанавливаемых источников энергии (ВИЭ), децентрализация генерации и широкое внедрение «умных сетей» (smart grid) приведут к радикальному снижению стоимости электроэнергии.

Изменение климата

Основная статья: Изменения климата на Земле

Место альтернативных источников в электрогенерации

Структура электроэнергетики по типу 2000-2019 гг

Страны лидеры по установленной мощности

Структура энергогенерации в странах Латинской Америки в 2019 г. Динамика увеличения мощности электрогенерации в странах Латинской Америки

Направления альтернативной энергетики

Использование восстанавливаемых источников энергии (ВИЭ) общественное мнение чаще всего рассматривает в контексте «зеленой энергетики», которая в процессе работы минимально влияет на окружающую среду, и считает это весьма инновационным направлением, которое появилось совсем недавно.

Однако, это не совсем верно.

Классическим примером генерирующих мощностей, использующих ВИЭ, являются гидроэлектростанции, которые по всему миру строят более века. Ветряные, приливные, солнечные, геотермальные и другие электростанции на ВИЭ также разработаны многие десятилетия назад, причем в основу таких решений могут быть положены самые разные технологические подходы. Например, солнечные могут быть оснащены полупроводниковыми панелями, которые напрямую «конвертируют» свет в электричество, а могут представлять собой систему зеркал, которые фокусируют свет на резервуаре и нагревают содержащуюся там жидкость, которая крутит турбину. Вариаций приливных электростанций тоже множество.

ВИЭ-решения, принципы действия которых разработаны десятилетия назад, создают с использованием новых материалов и современных инженерных подходов, благодаря чему станции обходятся дешевле и становятся более эффективными. На примере солнечных батарей, в совершенствование которых вложены астрономические средства, такое развитие наиболее заметно, но для увеличения эффективности соответствующих решений есть и другие подходы.

Например, в Южной Корее будет построена плавающая солнечная электростанция, батареи которой будут поворотными, чтобы в течение всего дня сохранять оптимальную ориентацию на Солнце. По заявлению компании Solkiss, которая уже испытала прототипы, такой простой подход новому решению позволит увеличить выработку солнечной энергии на 22% по сравнению с наземными электростанциями, использующими стационарные батареи. Размещение батарей на водной поверхности упрощает изменение ориентации панелей, аналогичное решение можно создать и наземное, только оно окажется сложнее и дороже. Напомним, что размещение панелей на воде позволяет избежать нагрева, который сильно уменьшает эффективность солнечных батарей. Как видно, для получения существенного прироста эффективности не понадобилось открывать новые физические эффекты, создавать новые технологии производства полупроводниковых панелей и т.д., а достаточно оказалось традиционных инженерных подходов. Подобных примеров много, внимание инженеров привлечено к «зеленым электростанциям», поэтому изящные решения для этих систем создают десятками.

Электростанции на ВИЭ работают нестабильно. По понятной причине в темное время суток солнечные электростанции не генерируют электричество, построенные на других принципах «зеленые» решения в большинстве случаев также сильно зависят от капризов погоды: например, наступает штиль — ветряные электростанции простаивают, а мощность волновых падает на порядки.

Сезонные явления тоже способны существенно изменить эффективность ВИ-станций по причинам, известным из школьного курса природоведения и физической географии. В зимнее время уменьшается световой день, становится меньше ясных дней и солнце ниже над горизонтом — и выработка электричества солнечными батареями снижается не на проценты, а в разы.

Это означает, что «зеленые электростанции» будут эксплуатировать параллельно с генерирующими объектами традиционной энергетики. Получаемый синтез обеспечивает снижение цены электричества при сохранении стабильности энергопитания. Но для смягчения ситуации, вызываемой нестабильностью электростанций на ВИЭ все чаще используют и другие решения. Ситуацию могут несколько смягчить энергонакопители.

Гидроэнергетика

Самый надежный в мире возобновляемый источник энергии — не ветер и не солнечный свет, а вода. В 2019 году мировые гидроэнергетические мощности достигли рекордных 1308 гигаватт. Гидроэлектроэнергия дешевая, легко хранится и отправляется, производится без сжигания топлива, следовательно, экологична. Водная энергетика была очень востребована во время пандемии Covid-19, поскольку производство электроэнергии было мало затронуто из-за степени автоматизации современных объектов. Однако, как и в случае с другими источниками энергии, гидроэнергетика не обходится без экологических издержек, может нанести ущерб местным водным экосистемам

[2].

Ветроэнергетика

Солнечная энергетика

Биоэнергетика

Источники биоэнергетики в Бразилии, мегаватт

Электричество испарением воды

Испарение — это процесс, с помощью которого вещество переходит из жидкого состояния в газообразное. Как правило, испарение является следствием нагревания вещества до определенной температуры. Именно благодаря испарению на Земле поддерживается круговорот воды, и испарителем в данном случае выступает Солнце. Масштабы энергии, которая тратится на процесс испарения по всей планете, на самом деле весьма велики, хоть мы в повседневной жизни и не замечаем этого

[3].

По словам Озгура Сахина (Ozgur Sahin) и его коллег из Колумбийского университета, вода, которая испаряется из всех рек, озер и плотин на территории современных США (за исключением Великих озер) может обеспечить до 2,85 миллиона мегаватт-часов электроэнергии в год. Для сравнения, это эквивалентно двум третьим электроэнергии, произведенной во всех штатах США за 2015 год! И это при том, что в 15 из 47 штатов потенциальная мощность электростанций превышает реальный спрос на энергию.

Двигатели будущего: все дело в воде

Исследователи предлагают установить на пресноводных водоемах двигатели[4], которые не только вырабатывали бы электроэнергию, но и вдвое уменьшили бы интенсивность самого испарения, что во многих ситуациях позволило бы сохранить огромные запасы питьевой воды.

Однако подобная технология предполагает, что водный массив будет накрыт поглощающими панелями — что крайне нежелательно. Для начала, впрочем, необходимо построить сам испарительный двигатель, но здесь ученые уже продемонстрировали всю мощь науки и создали несколько миниатюрных, но вполне рабочих прототипов установки.

Тестовые двигатели основаны на материалах, которые при высыхании сжимаются — к примеру, в конструкции задействована лента, покрытая бактериальными спорами. Теряя воду, споры ссыхаются и сжимаются, сокращая при этом ленту. Сахин сравнивает принцип работы этой конструкции с мышечной системой, поясняя, что микроскопические споры могут натягивать ленту с довольно большой силой. Чтобы избежать загрязнения почвы из-за многократного вымачивания и обилия химических веществ, прототипы регулируют свою работу в зависимости от изменения общего уровня влажности. К примеру, в одной из версий двигателя «мышца» расположена чуть выше водного слоя. Когда испаряющаяся влага поднимается вверх, то ленты, натянутые по принципу жалюзи, расправляются и создают щели, благодаря которым в них поступает воздух и помогает лентам снова высохнуть и избежать переувлажнения.

Достоинства и недостатки изобретения

Научное сообщество согласно с тем, что потенциал этого изобретения огромен. На сегодняшний день основные проблемы заключаются в его использовании. Кен Калдейра из Института Карнеги по науке в Стэнфорде, штат Калифорния, сомневается, что можно эффективно преобразовать энергию испарения в электрическую энергию. По его мнению, промышленная разработка двигателей в той степени, когда их производство станет массовым, а использование — повсеместным, является чрезвычайно трудоемкой задачей.

Основным конкурентом новых двигателей выступают хорошо знакомые всем солнечные батареи, поскольку все более распространенным явлением для плавучих солнечных ферм является их размещение на водохранилищах. Однако испарительные двигатели могут быть изготовлены из дешевых биоматериалов, которые легче утилизировать, чем солнечные батареи — а это немаловажно.

Если технология получит распространение, то ее использование повлияет и на локальный климат за счет изменения степени испарения воды. Но это будет иметь хоть какое-то значение лишь в том случае, если площадь закрытой поверхности составит 250 000 км2 и более. Впрочем, когда речь идет о таких масштабах, то любая энергетическая установка, какой бы экологически чистой она не была, будет оказывать воздействие на окружающую среду. Более того, в дождливых районах, где частые осадки вызывают множество проблем, снижение интенсивности испарения воды будет крайне полезным.

“Дождевые батареи”

В мире появятся не только солнечные, но и «дождевые батареи». В феврале 2020 года стало известно о разработке способа получения электричества благодаря падению дождевой воды, который позволяет увеличить энергоэффективность процесса в тысячи раз. Первый электрогенератор на основе новой технологии могут создать через пять лет

[5].

Группа ученых сразу из нескольких научных организаций Китая и США разработала принципиально новый способ получения электричества с помощью падения дождевой воды на поверхность. Об этом пишет РИА Новости со ссылкой на научную статью в журнале Nature. Этот способ позволяет увеличить мощность подобных установок в тысячи раз по сравнению с существующими прототипами.

«Наше исследование показывает, что капля объемом 100 микролитров воды, падающая с высоты 15 сантиметров, может генерировать напряжение свыше 140 вольт. А за счет ее мощности могут питаться 100 небольших светодиодных ламп», — приводятся в пресс-релизе слова руководителя научной группы Ван Цуанкая из Городского университета Гонконга.

Скачкообразного роста мощности подобных генераторов удалось добиться благодаря идее накрыть их специальной пленкой из политетрафторэтилена (ПТФЭ). Она способна накапливать поверхностный заряд при непрерывном попадании капель воды, пока он не достигнет насыщения. В подобном устройстве капли действуют как резисторы, а поверхностное покрытие — как конденсатор, отмечается в публикации агентства.

Первый прототип «дождевого» электрогенератора для практического применения будет создан в ближайшие пять лет, считают в научной группе. Если его испытания завершатся успехом, в мире могут появиться аналоги солнечных батарей для использования в условиях сильного дождя. Например — инновационные зонты с функцией зарядки телефонов. Или «дождевые батареи», рассчитанные на применение в отдельных регионах в период сезона сильных дождей.

Что интересно, в уникальном научном исследовании были задействованы сразу 13 ученых из пяти научных организаций. Помимо Городского университета Гонконга это университет Небраски-Линкольна в США, Университет науки и технологий КНР, Университет электронных наук и технологий Китая, а также Институт наноэнергии и наносистем пекинского отделения Китайской академии наук.

Энергонакопители — от насосов до аккумуляторов

Выработанную электрическую энергию надо потреблять сразу, но такая возможность есть далеко не всегда. Ситуации, когда в силу каких-либо причин образовался избыток электричества, зачастую приводят к необходимости утилизации энергии. Фирма Google, купившая избыточные мощности, был вынуждена закупать промышленные калориферы, которые грели атмосферу. С экономической точки зрения совершенно непозволительно, но иногда другого выхода просто нет.

Электроэнергия очень плохо поддается «консервированию», но энергонакопители все же существуют, причем довольно разнообразные. Заметим, что энергонакопители также не являются продуктом последней пятилетки, подобные решения существовали давно, еще в доцифровую эпоху. Например, энергонакопителем является система, которая при избытке энергии насосами перекачивает воду в гидросистеме с нижнего уровня на верхний, а в последствии эта вода может быть использована для вращения генераторов, вырабатывающих электричество, когда оно нужно потребителям. Разумеется, потери будут огромными — КПД и у насосов, и у турбин далеки от стопроцентных, а также нужно обслуживать сложные и дорогостоящие гидросооружения — но в ряде случаев применение таких систем оказывается экономически обоснованным.

Все чаще в качестве энергонакопителей применяют аккумуляторы. Аккумуляторная батарея для дома, которую предлагает Элон Маск, по понятной причине является наиболее известным продуктом такого плана. Одна из компаний Маска предлагает домохозяйствам систему из солнечных батарей и аккумулятора. Батареи в светлое время суток обеспечивают домашние электроприборы энергией и заряжают домовой аккумулятор, а когда солнца нет — электричество дом получает уже от аккумулятора. Конечно, это не единственное такое решение, аналогичные системы предлагают и российские компании, например, «Эковольт».

Австрийская компания Luna создает накопителей энергии общей мощностью 100 МВт на основе литий-ионных аккумуляторов. Согласно планам, в 2016 году будут построены системы хранения энергии — они будут расположены в Австрии и в Германии — общей мощностью 60 МВт, а первой половине следующего года должны быть введены в строй оставшиеся 40 МВт. Разработчиком систем является японская Nidec, батареи поставляет LG. Накопители представляют собой сорокафутовые контейнеры, каждый из которых может хранить около 3 МВт. По заявлению компании, создаваемая система энергонакопителей будет позволять в течение часа обеспечивать электроэнергией примерно 350 тысяч домохозяйств.

Эффективность всех типов существующих сегодня накопителей оставляет желать лучшего, но все же лучше использовать их, чем попусту греть атмосферу, как в рассмотренном выше примере. Проблема нестабильной работы «зеленых электростанция» приводит к росту значимость и, соответственно, популярность решений собственной генерации.

Собственная генерация

Собственные генерирующие мощности — по сути, маленькие электростанции — давно присутствуют на большом количестве объектов. В первую очередь это, разумеется, удаленные от централизованных сетей электроснабжения площадки — строительные, геологоразведочные, промысловые, туристические и т.д. Но существует и большое количество ситуаций, когда собственные генерирующие мощности актуальны и на территориях с развитой инфраструктурой, в том числе, и электрическими сетями.

Иногда наличие решений собственной генерации — требование нормативов ГО и ЧС, предписывающих наличие таких решений на объектах, которые не могут остаться без электричества в любой ситуации. Централизованное электроснабжение по какой-либо причине — от стихийного бедствия до техногенных аварий — может пропасть, а без энергии даже на короткое время не могут остаться больницы, родильные дома аварийные службы, убежища и т.д. Иногда наличие мощностей собственной генерации — требование бизнеса. Любой бизнес-центр, оставшийся без электричества, понесет убытки, но существует множество площадок, на которых перебои с энергопитанием: дата-центры, узлы связи и т.д. Практически на всех перечисленных объектах есть дизель-генераторы, запуск которых в аварийных условиях обеспечит электричеством палаты интенсивной терапии, серверы, боксы для новорожденных и другие элементы инфраструктуры.Если в отдаленных от цивилизации районах мощности собственной генерации нагружены постоянно, в городах их чаще всего используют как резервные источники питания на случай аварийных ситуаций, но существует и другой вариант — когда их используют для снижения затрат на электричество. В ряде случаев такой подход экономически оправдан.

Часто в инфраструктуре — развернутой или создаваемой — есть элементы, которые можно заставить заодно крутить генераторы. Простейший пример — котельные, создающие достаточно количество потоков воды и пара, которые можно использовать для вращения генераторов. Такие решения, способные кроме тепла давать еще и электричество, и называют системами когенерации. Решения для собственной генерации не сводятся к упомянутым «дизелям» и котельным «двойного назначения», способным заодно с отоплением выдавать и электричество. Иногда, например, генераторы крутят сточные воды и это пример того, как собственная генерация может быть «зеленой».

Все чаще в решениях собственной генерации используют солнечные батареи. Наиболее выразительный пример — кампус Apple (ISpaceship (офис Apple)), крыша которого покрыта солнечными батареями, вырабатывающими столько энергии, что хватает и самому «яблочному» офису, и даже на продажу. Но этот пример не единственный — солнечные батареи все активней применяют в студенческих кампусах, дачных поселках и даже в отдельных офисах и жилищах. Решения, развернутые в масштабах дачного участка, квартиры, дома или жилого квартала относят к микрогенерации. Разумеется, мощность каждого отдельного такого решения невелика, но их очень много и их количество растет, соответственно, увеличиваются вырабатываемые ими мощности. Системы микрогенерации начинают конкурировать с традиционными электростанциями, с которыми успешно сосуществуют.

В России

Основная статья: Альтернативная энергетика в России

В мире

2020

Снижение объема ввода новых мощностей из-за COVID-19

Международное энергетическое агентство прогнозирует, что из-за коронакризиса COVID-19 возобновляемая энергетика в 2020 году прибавит мощностей на 167 гигаватт, что на 13% ниже, чем в 2019-м, однако уже в 2021 году прирост мощностей будет примерно таким же, как в 2019-м.

Все большее число корпораций увеличивает долю возобновляемых источников энергии в своем общем профиле энергопотребления. Эта тенденция особенно заметна в Европе, Азии и Северной Америке, но и развивающиеся рынки постепенно нагоняют тренд. Согласно исследованию Международного агентства по возобновляемой энергии, активнее прочих возобновляемыми источниками пользуются производители разного рода материалов – химическая промышленность, целлюлозно-бумажная и деревообрабатывающая промышленность, сектор добычи и обработки полезных ископаемых и металлургия.

Ученые заявили об опасности возобновляемых источников энергии для биоразнообразия

Согласно выводам нового исследования, ветряные, солнечные и гидроэнергетические установки представляют угрозу для важных районов биоразнообразия, в том числе природных заповедников[6].

Команда ученых из Университета Квинсленда (Австралия) проанализировала расположение 12,5 тысячи источников возобновляемой энергии, которую получают из природных ресурсов, — солнечных, ветровых и гидроэнергетических сооружений. Как оказалось, более 2000 таких объектов могут оказывать негативное влияние на биоразнообразие районов, в которых они построены. При этом порядка 169 из них обнаружились на особоохраняемых природных территориях.

«Помимо того, что свыше 2200 объектов возобновляемой энергии уже работают в важных районах биоразнообразия, еще 900 находятся на стадии строительства. <…> Энергетические объекты и инфраструктура вокруг них, например дороги, и повышенная активность человека (люди, работающие на таких объектах, порой строят рядом поселения. — Прим. ред.) могут нанести невероятный ущерб окружающей среде. Эти события несовместимы с усилиями по сохранению биоразнообразия», — объяснил ведущий автор исследования, опубликованного в Global Change Biology, Хосе Ребейн[7].

Авторы работы отмечают, что переход от ископаемого топлива — нефти, угля, горючего сланца, природного газа, торфа, а также прочих горючих минералов и веществ, добываемых под землей или открытым способом — к возобновляемой энергии, источники которой, по мнению человека, неисчерпаемы, служит основополагающим фактором для замедления хода нынешнего антропогенного изменения климата.

Однако, подчеркивают исследователи, количество объектов «зеленой» энергии за последние 20 лет утроилось и зачастую они превращаются в территории с интенсивным землепользованием и могут воздействовать на охраняемые близлежащие районы. Подобные сооружения чаще всего превосходят по площади те же электростанции, работающие на ископаемом топливе, и им требуются в десять раз большие территории, чтобы производить такое же количество энергии.

2019

Стоимость киловатта энергии в альтернативных системах
В зеленую энергетику инвестировано $300 млрд

Всего в мире инвестиции в «зеленую» энергетику в 2019 году составили около $300 млрд, а к 2030 году этот показатель может увеличиться до $1,9 трлн.

С начала XXI века возобновляемые источники энергии завоевали существенную нишу в мировой энергетической промышленности. Если в 2000 году на них приходилось около 21,8% от вводимых в эксплуатацию электрогенерирующих мощностей, то в 2019 году – уже 34,7% (согласно данным исследования Международного агентства по возобновляемой энергии – IRENA). Этому во многом поспособствовала растущая озабоченность международного сообщества вопросами экологии и изменения климата. Стоит также отметить и перераспределение долей рынка между сегментами внутри самой отрасли возобновляемой энергетики. Например, на гидроэнергетику в 2000 году приходилось примерно 93% от общего объема энергии, генерируемой за счет возобновляемых источников, а уже к 2019 году эта доля упала до 47%. Это произошло за счет увеличения объемов выработки энергии солнечными и ветряными электростанциями.

Источники финансирования проектов в сфере альтернативной энергетики, по данным на сентябрь 2020 г
Правительства стран Азиатского региона начали сокращать субсидии

Расширение генерирующих мощностей, использующих возобновляемые источники, продолжалось непрерывно с 2003 года. В 2019 году правительства почти всех стран в Азиатском регионе начали сокращать субсидии в развитие этой отрасли. Как результат, в 2019 году годовой прирост «зелёных» генерирующих мощностей впервые за 17 лет снизился, хотя сокращение составило всего 2 %. В 2020 году возобновляемую энергетику ждёт удар со стороны пандемии коронавируса, который ещё сильнее затормозит развитие отрасли[8].

По данным Международного агентства по возобновляемым источникам энергии, которые приводит издание Nikkei, в 2019 году во всем мире было добавлено 176 ГВт возобновляемых генерирующих мощностей, из которых 97,68 ГВт составили солнечные электростанции. По первой позиции годовое сокращение составило 2 %, по второй ― 2,5 %.

Основной вклад в замедление роста «зелёных» мощностей внесла Азия. В 2019 году в регионе добавилось на 12 % меньше возобновляемых генерирующих мощностей, чем в 2018 году. В Китае и Японии произошло снижение на 15  % и 40 % соответственно. Стимулы закончились, и интерес инвесторов пропал. За все прошедшие годы японским налогоплательщикам льготные тарифы обошлись в 2 трлн иен ($18,6 млрд). Тем не менее, правительство Японии планирует внедрить механизм премиальных надбавок производителям «зелёной» энергии сверх рыночных ставок.

Что такое альтернативные источники энергии: виды и использование

Ухудшение экологической обстановки в мире и уменьшение природных ресурсов заставляет задумываться об использовании возобновляемых источников электроэнергии.

Нетрадиционная электроэнергетика, в отличие от предыдущего вида получения электричества, может возобновляться бесконечное число раз, имеет лучшую производительность, менее дорога в обслуживании и экологически безопасна.

Из нашей статьи вы узнаете, что такое альтернативные источники энергии, зачем они нужны, какие у альтернативных источников энергии виды существуют, преимущества и недостатки традиционных и нетрадиционных электростанций, какие источники энергии можно считать альтернативными, какие нетрадиционные источники энергии применяются в нашей стране, а также, почему ведется поиск альтернативных источников энергии.

Зачем нужны альтернативные источники энергии

Альтернативные источники энергии, что это такое, и для чего они нужны? Поскольку запасы традиционных источников получения электроэнергии, таких как уголь, газ, нефть, иссекаемы, то значит, человечеству пришлось задуматься об изобретении альтернативной энергии для получения электричества.

Кроме того, применять традиционные методы стало проблемно, поскольку:

  • Традиционные электрические станции применяют топливо, которое может скоро закончиться. В худшем случае это случится через 30 лет;
  • Цена на топливо поднимается, а из-за этого вырастает и стоимость электричества;
  • Изготовленная продукция выбрасывает в окружающую среду много вредных веществ, тем самым ухудшая экологическую обстановку;
  • Тепло, которое выделяется на электростанциях, приводит к образованию глобального потепления.

Поэтому, отвечая на вопрос, что такое альтернативная энергия, мы поняли, что переход на использование альтернативных источников энергии должен произойти как можно скорее и в будущем они должны полностью заменить ТЭС.

Основные виды

В зависимости от типа ресурса, альтернативные источники электрической энергии в мире классифицируются на несколько видов, которые определяют ее способы получения и типы конструкций.

Далее кратко разберем главные виды альтернативных источников электроэнергии и их характеристики.

Вода

Гидроэлектростанция основана на выполнении преобразования кинетической энергии воды в электроэнергию.

К объектам этого типа относятся ГЭС разной мощности, которые устанавливаются на берегах морей. В этих конструкциях, под влиянием воды, приводятся в действие лопасти гидротурбины, которые начинают вырабатывать электрическую энергию. Гидравлическая турбина является главным элементом в ГЭС.

Еще один способ получения альтернативной энергии при помощи воды – это использование энергии приливов. Но фактически здесь используется вращательная энергия Земли.

Тепло земли

Этот источник нетрадиционной энергетики вырабатывает электроэнергию из тепла земли. Этот метод получения является долгосрочным, поскольку он применяет почти неиссякаемый ресурс.

Главный плюс этого метода получения энергии — независимость от времени года.

Однако имеются и минусы – необходимость бурения скважин глубиной в 1 км.

Биотопливо

Биоэнергетика получает электроэнергию из биотоплива 1-го, 2-го и 3-го поколений.

  • 1-ое включает в себя культуры сельского хозяйства, которые содержат много жиров и крахмала.
  • 2-ое – топливо, получаемое из древесины и остатков растений, которые нельзя использовать в качестве питания.
  • 3-ее – топливо из водорослей.

Самым распространенным является 1-ое поколение.

Ядерная энергетика

Для получения электрической энергии таким методом применяют экологично чистую ядерную энергетику, которая отличается недорогим обслуживанием.

Но многие отказываются от такой АЭС, поскольку при аварии будет происходить продолжительное заражение и отравление территорий.

Кроме того, недостатком такого метода является цена утилизации и значительный выброс тепла, который способствует возникновению парникового эффекта.

Ветер

Ветровая электростанция выполняет преобразование воздуха в электричество.

Главным элементом таких конструкций является ветрогенератор. Ветрогенераторы разделяются по:

  • техническим характеристикам;
  • размерам;
  • установкой с вертикальной либо горизонтальной осью вращения;
  • числом ветровых лопастей, а также территорией их размещения.

Ветровая энергетика является самым перспективным и развитым альтернативным источником энергии. Эти электростанции можно размещать, как на берегу, так и в море.

Солнце

Солнечная электроэнергия возникает при помощи двух типов установок.

  1. Гелиоконцентраторы. Это главный компонент системы, который выполняет преобразование солнечной энергии в электричество. Отрицательной стороной этой конструкции является сложность установки.
  2. Фотоэлементы. Этот тип используют чаще, поскольку он имеет маленькую стоимость, простую установку и легкость обслуживания. Такой элемент занимает лидирующие позиции на рынке, однако имеет КПД менее 20%.

Солнечная энергия более продуктивно используется в таких странах, как Египет и Саудовская Аравия, в других странах полученной электроэнергии не хватает для полноценного перехода на СЭС.

Прочие варианты

Имеются и другие типы получения электричества:

Эти методы имеют также свои плюсы и минусы.

Преимущества применения

Основными преимуществами использования альтернативных источников энергии является их:

  • Возобновляемость;
  • Надежность;
  • Положительное влияние на экологию, по сравнению с ТЭС.

Недостатками таких станций является:

  • Зависимость от времени года и размещения. В определенный промежуток времени число вырабатываемой электроэнергии в разы больше, чем в другое время. Кроме того, число выработки электричества зависит от месторасположения. Поэтому очень важно правильно выбрать расположение конструкции, например, для ветровых станций лучшим местом будет морское побережье, так как там все время сильный ветер.
  • Локальность. Этот параметр указывает на зависимость электростанции от географической широты.
  • Нестабильная работа. Это главный минус, как в альтернативных источниках электроэнергии, так и традиционных. В большинстве случаев АИЭ зависят от погодных условий, на которые человек никак не может оказать влияние.

Альтернативная энергетика в современной России

В современной России, на данный момент, альтернативные источники энергии развиваются быстрее, чем в прошлом году, но все же эти конструкции не являются самыми распространенными. На сегодняшний день, в нашей стране, большая часть электричества вырабатывается с помощью ТЭС.

Солнечные электростанции

Наибольшей перспективой развития для выработки электричества от солнечной энергии имеют южные и западные регионы. В нашей стране проводить добычу электричества при помощи солнечной энергии очень перспективно, по этой причине такие проекты даже получают поддержку от государства.

ГЭС и приливные электростанции

Наша страна неплохо применяет водную энергетику для выработки электричества. Также нужно заметить, что электроэнергия, которая вырабатывалась на ГЭС, стоит в 2 раза меньше, чем полученная на ТЭС.

ПЭС требуют значительных вложений, по этой причине развитие альтернативной энергетики в России происходит очень медленно. Эксперты утверждают, что приливные электростанции составляли бы сейчас 5 часть получаемой электроэнергии в России.

Ветровые установки

Осуществлять установку ветрогенератора с горизонтальной осью вращения в нашей стране нельзя, из-за малой скорости ветра. Но часто используют другой тип конструкции, которая имеет вертикальную ось вращения.

В России самая большая ветряная электрическая станция установлена в Ульяновской области. Ее мощность достигает 35 000 000 Вт.

Геотермальные станции

В РФ имеется пять готовых к работе геотермальных станций, три из которых размещены на Камчатке. На данный момент доля вырабатываемой альтернативной энергии составляет более 20% от всей генерации энергетической системы РФ.

Применение биотоплива

В нашей стране имеется изготовление твердого биотоплива. В настоящее время его производство выполняется во Владивостоке.

АЭС

РФ добывает электрическую энергию при помощи ядерной энергетики. Это направление начало серьезно развиваться, поэтому стали возводиться новые электростанции и использоваться новые методы получения.

Россия занимает лидирующие позиции по мощности генерации электрических станций с помощью альтернативных источников электроэнергии, но все же в этом мы пока проигрываем Китаю.

Что можно использовать в частном доме

Выработка электричества при помощи АЭС нужна не только для фирм и государства, но для частного дома. Имеются разные конструкции, которые вырабатывают электроэнергию нетрадиционным методом.

АЭС позволит вам сэкономить на счетах электричества, а кроме того, вы никогда не останетесь без света при отключении электричества.

Солнечные панели

Этот тип получения электроэнергии поможет получить электричество для дома. Для приобретения этого устройства вам необходимо знать мощность и найти место для фиксирования. Эта покупка в скором времени окупиться и вы даже уйдете в плюс.

Солнечные коллекторы

Принцип действия этой конструкции следующий: она нагревается на солнце, затем направляет накопленное тепло к воде, и тем самым нагревает ее. В результате вы будете всегда иметь горячую воду, а также отопление в любое время.

Ветрогенераторы

Ветровые генераторы собирают энергию, которая будет впоследствии использоваться бытовыми изделиями. Как правило, устанавливают несколько сооружений, которые включаются по очереди в случае аварийного выключения другого.

Тепловые насосы

Прибор всегда нагревает дом до требуемой температуры. Многие оборудования оснащены кондиционером, что особенно важно в жаркую погоду. В роли источника электроэнергии могут применяться различные виды энергий.

Производство биогаза

Изготовление биогаза в домашних условиях позволяет заменить использование традиционного топлива на недорогой аналог. Такую конструкцию можно изготовить своими руками или приобрести в магазине.

Мини гидроэлектростанция

Мини гидроэлектростанция — это маленькая станции, которая вырабатывает электричество для жилья.

Применяют это сооружения с целью главного или запасного источника электроэнергии. Переносные ГЭС хорошо подойдут для местностей, к которым трудно добраться.

Прочие возможности

Имеются и другие возможности для выработки электричества, но они обойдутся вам в значительную сумму. К примеру, водородные котлы, которые пришли на замену традиционному отоплению дома без выбросов вредных веществ. Тепло вырабатывается за счет прохождения хим. реакций между водородом и кислородом.

Видео о том, что такое альтернативные источники энергии

Альтернативная энергетика для дома своими руками обзор лучших эко-технологий

Содержание статьи:

Энергия ветра

Использование воздушных потоков в качестве ветровой нагрузки позволяет добиваться очень высоких мощностей, в пределах от 1-15 кВт на одну вышку. Классическая система получения альтернативной энергии с использованием ветра состоит из трех составляющих:

  • Металлическая или бетонная мачта с поворотной платформой;
  • Воздушный винт, соединенный механической трансмиссией с электрогенератором;
  • Аккумуляторная батарея с системой преобразования тока.

Стоимость ветровой электроэнергии зависит от размеров конструкции, чем больше высота, на которую поднят винт, тем выше эффективность источника альтернативной энергии. Для альтернативной установки мощностью 50 кВт/ч, поднятой на мачту в 50 м, цена производимой «воздушной» электроэнергии сопоставима с тарифом тепловой электростанции.

Для частного дома возможности использования ветра в качестве альтернативного источника значительно скромнее. Например, простейшая ветровая установка с высотой мачты в 4,5 м и диаметром четырехлопастного винта в 2 м, при ветре в 12 м/с выдает не менее 800-900 Вт/ч. Четыре ветроустановки способны заменить дорогостоящий источник энергии на солнечных кремниевых панелях площадью 20 м2. При этом стоимость альтернативной энергии будет вдвое выше сетевого тарифа.

Простейшая установка получения альтернативной энергии с винтом диаметром всего 70 см, установленная на балконе пятого этажа, позволяет получить 200 Вт/ч даже в условиях несильного ветра. Изготовить альтернативные источники энергии для дома своими руками не составит особого труда, необходимо только спроектировать винт специальной конфигурации, чтобы максимально снизить уровень шума.

В Китае малогабаритные установки с винтом 50 см широко используются в качестве альтернативного источника электроэнергии для питания фонарей уличного освещения и ретрансляторов беспроводного интернета, систем сигнализации и камер наблюдения на парковках и автомагистралях. Стоит такая «кроха» в 10 раз дешевле кремниевой панельки аналогичной мощности, а работает практически в любую погоду, даже без аккумуляторов.

При удачном выборе места под размещение мачты ветряная электростанция в качестве альтернативного источника электроэнергии окупается в течение 2-3 лет. Высота мачты должна составлять не менее 10-12 м, а диаметр лопастей – 2,5-3 м. Две вышки способны производить до 5 кВт/ч при среднем ветре.

Ветроустановки отлично работают в степной и гористой местности, в условиях плотной городской и пригородной застройки их эффективность снижается на 30-40%. Единственным недостатком ветроустановки остается высокий уровень зашумленности. Системы мощностью около 1 кВт способны генерировать шум, сопоставимый с децибелами работающего дизельного автомобиля.

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза. Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Система солнечного электроснабжения: принцип работы

Понимание назначения каждого из элементов системы позволит представить ее работу в целом. Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов. Их основная особенность состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Соответственно одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, что достаточно для зарядки 12-вольтовой аккумуляторной батареи.
  • Аккумуляторы. Одной батареи надолго не хватит, поэтому система может насчитывать до десятка таких устройств.  Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью  3-5 кВт.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Виды альтернативной энергетики

В зависимости от источника энергии, который в результате преобразования позволяет получать человеку электрическую и тепловую энергии, используемые в повседневной жизни, альтернативная энергетика классифицируется на несколько видов, определяющих способы ее генерации и типы установок служащих для этого.

Энергия солнца

Солнечная энергетика основана на преобразовании энергии солнца, в результате которого получается электрическая и тепловая энергии.

Получение электрической энергии основано на физических процессах, происходящих в полупроводниках под воздействием солнечных лучей, получение тепловой – на свойствах жидкостей и газов.

Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния.

Основой тепловых установок — служат солнечные коллекторы, в которых энергия солнца преобразуется в тепловую энергию теплоносителя.

Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.

Энергия ветра

Ветровая энергетика основана на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями.

Основой ветровых установок служит ветровой генератор. Ветровые генераторы различаются по техническим параметрам, габаритным размерам и конструкции: с горизонтальной и вертикальной осью вращения, различным типом и количеством лопастей, а также по месту их расположения (наземное, морское и т.д.).

Сила воды

Гидроэнергетика основана на преобразовании кинетической энергии водных масс в электрическую энергию, которая также используемую человеком в своих целях.

К объектам данного вида относятся гидроэлектростанции различной мощности, устанавливаемых на реках и иных водных объектах. В таких установках, под воздействием естественного течения воды, или путем создания плотины, вода воздействует на лопасти турбины вырабатывающей электрический ток. Гидротурбина, является основой гидроэлектростанций.

Еще один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.

Тепло земли

Геотермальная энергетика, основана на преобразовании тепла, излучаемого поверхностью земли, как в местах выброса геотермальных вод (сейсмически опасные территории), так и в иных регионах нашей планеты.

Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии.

Использования теплового насоса позволяет получать тепло из поверхности земли, вне зависимости от места его расположения. Его работа основана на свойствах жидкостей и газов, а также законах термодинамики.

Тепловые насосы различаются по мощности и своей конструкции, зависящей от первичного источника энергии, определяющей их тип, это системы: «грунт-вода» и «вода-вода», «воздух-вода» и «грунт-воздух», «вода-воздух» и «воздух-воздух», «фреон-вода» и «фреон-воздух».

Биотопливо

Виды биотоплива различаются по способам его получения, его агрегатному состоянию (жидкое, твердое, газообразное) и видам использования. Объединяющим все виды биотоплива показателем, служит то, что основой для их производства служат органические продукты, посредством переработки которых получается электрическая и тепловая энергии.

Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель.

Популярные источники возобновляемой энергии

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы.  Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы.

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.  Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Виды альтернативного электричества

Всегда перед потребителем стоит выбор, основанный на вопросе, что лучше? И в этом плане подразумевается, во-первых, затраты на приобретение нового вида источника электричества, во-вторых, как долго этот прибор будет работать. То есть, будет ли это выгодно, окупится ли вся затея, а если окупится, то через какой промежуток времени? Скажем так, экономию денежных средств еще никто не отменял.

Как видите, вопросов и проблем и здесь хватает, потому что электричество своими руками – дело не только серьезное, но и достаточно затратное.

Электрогенератор

Начнем именно с этой установки, как с самой простой. Простота ее заключается в том, что вам необходимо приобрести электрогенератор, установить его в надежном закрытом помещении, которое будет соответствовать правилам пожарной безопасности. Далее, проводите подключение электрической сети частного дома к нему, заливаете жидкое топливо (бензин или солярку) и включаете. После чего в вашем доме появляется электричество, которое зависит лишь от наличия топлива в баке генератора. Если продумать автоматическую систему подачи топлива, то вы получаете маленькую тепловую электростанцию, которая от вас будет требовать минимального присутствия.

Бензиновый генератор

К тому же электрогенераторы – это надежные и удобные установки, которые работают практически вечно, если правильно их эксплуатировать. Но тут есть один момент. В настоящее время на рынке присутствует два вида генераторов:

  • Бензиновый.
  • Дизельный.

Какой лучше? Скажем так, если вам требуется альтернативный источник энергии, который будет эксплуатироваться постоянно, тогда выбирайте дизельный. Если для временного использования, тогда бензиновый. И это еще не все. Дизельный электрогенератор имеет большие габаритные размеры, по сравнению с бензиновым, он сильно шумит при работе и выделяет огромное количество дыма и выхлопных газов. Плюс ко всему он дороже.

Появились недавно на рынке газовые генераторы, которые могут работать и от природного газа, и от сжиженного. Неплохой вариант, экологичный, не требующий специального помещения для установки. Можно к одному генератору подключить, к примеру, сразу несколько газовых баллонов, которые в автоматическом режиме будут подключаться к установке.

Газовый электрогенератор

Альтернатива углеводородному топливу

Среди трех видов электрогенераторов газовый самый лучший и эффективный. Но стоимость топлива (жидкого или газообразного) – удовольствие не из дешевых, поэтому стоит задуматься над тем, что самостоятельно вырабатывать топливо, вкладывая в него минимум денежных средств. К примеру, биогаз, который можно получить из биомассы.

Кстати, альтернативные виды энергии, которые сегодня называются биологическими, могут заменить практически все альтернативные источники электроэнергии. К примеру:

  • Биогаз получается при помощи брожения навоза, птичьего помета, сельскохозяйственных отходов и так далее. Главное – установить оборудование, которое используется для улавливания метана.
  • Из мусора, к примеру, на свалках, добывается так называемый целлюлозный эталон. Или как его называют специалисты, свалочный газ.

Внимание! Ученые уже подсчитали, что если перерабатывать все свалки мира, то можно получить до 84 миллиардов литров свалочного топлива, которое можно использовать для получения электроэнергии. .
ИБГУ-1 — установка для получения биогаза

ИБГУ-1 — установка для получения биогаза

  • Из сои и рапса, а точнее, из их семян, вырабатываются жиры, из которых можно получить биосолярку.
  • Из свеклы, сахарного тростника, кукурузы можно изготавливать биоэталон (биобензин).
  • Ученые доказали, что с помощью обычных водорослей можно аккумулировать солнечную энергию.

То есть, существует большой ряд научных разработок, которые выдают альтернативные виды энергии. И многие из них уже получили практическое применение. К примеру, установка ИБГУ-1, с помощью которой из навоза можно получить в сутки до двенадцати кубометров биогаза. Отечественные фермеры по достоинству оценили труд ученых, поэтому это оборудование раскупается быстро.

Сильный ветер согреет дом

Весьма успешно в качестве альтернативного источника для отопления загородного дома можно использовать энергию ветра. Этот ресурс невозможно исчерпать. Он имеет свойство возобновляться. Чтобы использовать силу ветра, потребуется специальное приспособление, называемое ветряк.

Принцип использования энергии ветра

Для преобразования силы ветра в альтернативный источник отопления потребуется ветрогенератор. Они бывают вертикальными и горизонтальными в зависимости от оси вращения. Существует много производителей, предлагающих свои модели клиентам.

Ветроэнергетические установки бывают с горизонтальной и вертикальной осью вращения. Большая производительность у горизонтально ориентированных

Стоимость зависит от материала, размера самой установки и мощности. Также можно соорудить ветряной генератор своими силами, используя подручные материалы.

Любой ветряк состоит из таких составляющих:

  • лопастей;
  • мачты;
  • флюгера, чтобы улавливать направление ветра;
  • генератора;
  • контроллера;
  • аккумуляторных батарей;
  • инвертора.

Принцип работы ветроэнергетической установки основан на силе ветра, вращающего лопасти ветряка. Лопасти, закрепленные на мачте, находятся высоко над землей. Чем выше, тем выше производительность. Так, для снабжения одного дома достаточно высоты 25 м.

Вращающиеся лопасти приводят в движение ротор генератора. Он начинает вырабатывать трехфазный переменный ток, требующий дальнейшего изменения. Этот ток поступает к контроллеру, где преобразуется в постоянный. Он используется для зарядки аккумуляторных батарей.

Пройдя через батареи, ток выравнивается и поступает на инвертор, где происходит его преобразование в однофазный переменный ток частотой 50 Гц и напряжением 220 Вольт. Теперь его можно использовать для бытовых нужд, в системе электрического отопления.

Галерея изображений

Фото из

В стандартной схеме ветряка присутствует ротор с лопастями, генератор и редуктор. Для установки необходима высокая мачта и аккумулятор для сбора полученной энергии
По расположению оси вращения ветряки подразделяются на горизонтальные и вертикальные. У горизонтальных вариантов с противоположной стороны крепится «хвост»
Ветряной генератор с вертикальным расположением оси вращения отлично работает при любом направлении и силе ветра, но требует более мощной и устойчивой конструкции мачты
Используя двигатели от ненужной беспроводной техники и практически бесплатные подручные средства, можно сделать эффективную самодельную электростанцию


Типовое устройство и стандарты конструкции ветряка


Ветрогенератор с горизонтальной осью вращения


Ветрогенератор с вертикальной осью вращения


Генератор для сборки самодельного ветряного генератора

Особенности расположения ветряков

Ветряные установки способны работать при определенных условиях. Во-первых, ветрогенератор — довольно объемное сооружение, требующее внушительной площади для устройства. Маленький прибор не способен удовлетворить потребности в энергии.

Его высота должна превышать минимум на 10 м окружающие дома, деревья и прочие строения, а линии электропередач и прочие объекты должны находится в 100 м от ветряка. Это требование не всегда выполнимо – не все владельцы частных домов имеют приусадебные участки достаточной площади.

Ветряки лучше всего располагать на возвышенности, холме, подальше от деревьев и зданий – минимум в 100 метрах

Во-вторых, хорошо, когда рассматриваемая местность обладает хорошим ветропотенциалом – возвышенность или степная зона. Для запуска генератора потребуется скорость ветра от 2 м/с. Многие модели ветряных систем, предназначенные для использования частными домохозяйствами, способны полностью покрыть потребности в электроэнергии.

Так, ветряк мощностью 1,5 кВт может в месяц генерировать, в зависимости от времени года, 100-200 кВт час. Если высоту мачты увеличить, то производительность станет больше в 2 раза. Но это потребует дополнительных затрат на монтаж и расходные материалы. Срок службы ветряных электростанций составляет в среднем 20 лет.

Ролик об изготовлении поможет легко разобраться в принципах устройства:

Приливные электростанции.

Для
выработки электроэнергии электростанции
такого типа используют энергию прилива.
Недостаток приливных электростанции
в том, что они строятся только на берегу
морей и океанов, к тому же они развивают
не очень большую мощность, да и приливы
бывают всего лишь два раза в сутки. И
даже они экологически не безопасны. Они
нарушают нормальный обмен соленой и
пресной воды и тем самым – условия жизни
морской флоры и фауны. Влияют они и на
климат, поскольку меняют энергетический
потенциал морских вод, их скорость и
территорию перемещения. Морские
теплостанции, построенные на перепаде
температур морской воды, способствуют
выделению большого количества углекислоты,
нагреву и снижению давления глубинных
вод и остыванию поверхностных. А процессы
эти не могут не сказаться на климате,
флоре и фауне региона. Оказывается, что,
если приливных электростанций построить
много, они могут существенно замедлить
вращение Земли вокруг свей оси. Вред от
такого вмешательства в природу может
быть совершенно непредсказуемым и
непоправимым.

Энергия солнца в электричество

Солнечные панели впервые начали делать для космических кораблей. В основе устройства лежит способность фотонов создавать электрический ток. Вариаций конструкции солнечных батарей великое множество и каждый год они совершенствуются. Самостоятельно изготовить солнечную батарею можно двумя способами:

Способ №1. Купить готовые фотоэлементы, собрать из них цепь и накрыть конструкцию прозрачным материалом

Работать нужно предельно осторожно, все элементы очень хрупкие. Каждый фотоэлемент имеет маркировку в вольт-амперах

Посчитать нужное количество элементов для сбора батареи необходимой мощности не составит большой сложности. Последовательность работы такая:

  • для изготовления корпуса понадобится лист фанеры. По периметру прибиваются деревянные рейки;
  • в листе фанеры сверлятся отверстия для вентиляции;
  • внутрь помещается лист ДВП со спаянной цепью фотоэлементов;
  • проверяется работоспособность;
  • на рейки прикручивается оргстекло.

Солнечные батареи

Способ №2 требует знаний электротехники. Электрическая цепь собирается из диодов Д223Б. Спаивают их по рядам последовательно. Помещают в корпус, накрытый прозрачным материалом.

Фотоэлементы бывают двух видов:

  1. Монокристаллические пластины обладают КПД 13% и прослужат четверть века. Безупречно работают только в солнечную погоду.
  2. Поликристаллические имеют КПД ниже, их срок службы всего 10 лет, но мощность не падает при облачности. Панель площадью 10 кв. м. способна произвести 1КВт энергии. При размещении на крыше стоит учитывать общий вес конструкции.

Схема солнечной батареи

Готовые батареи размещают на самой солнечной стороне. Панель необходимо оснастить возможностью регулировки наклона угла по отношению к Солнцу. Вертикальное положение устанавливают во время снегопадов, чтобы батарея не вышла из строя.

Солнечную панель можно использовать с аккумулятором или без него. Днём потреблять энергию солнечной батареи, а ночью — аккумулятора. Либо днём пользоваться солнечной энергией, а ночью — от центральной сети электроснабжения.

Источники энергии дома варианты

В связи с ростом тарифов на энергию многие люди начинают задумываться не только об экономии энергии, но и об дополнительных источниках энергии. Некоторые люди предпочитают сделать самоделки своими руками, а некоторые предпочитают какие-либо готовые решения, к которым могут относиться определенные варианты.

А именно:

  1. Установка на стекла солнечных панелей, которые обладают высокой прозрачностью, благодаря чему их можно размещать даже в многоэтажных домах. Но при этом их КПД даже в солнечную ясную погоду не превышает 10%.
  2. Для освещения некоторых участков помещения используются светодиоды и светодиодные лампы на небольших аккумуляторах соединенных с солнечной панелью. Достаточно в течение дня заряжать, таким образом, аккумулятор чтобы вечером получить освещение.
  3. Установка традиционных солнечных панелей, которые позволяют заряжать аккумуляторы и от них уже через инвертор частично питать домашние приборы и лампы. Можно также вырабатывать горячую воду в теплое время года путем установки вакуумного насоса и теплового коллектора на крышу.

У жителей, проживающих в городских условиях, к сожалению, выбор дополнительных источников энергии ограничен, в отличие от тех, кто проживает в загородных домах. В частном доме гораздо больше возможностей сделать автономное электроснабжение. А также сделать для загородного дома или на даче автономные независимые системы обогрева.

Последние статьи

  • 0   Дорого-богато: самый большой пикап России, который занимает два парковочных места сегодня, 13:27
  • 0   Флагманам тут не место: почему сегодня можно взять бюджетный смартфон и быть счастливым сегодня, 11:50
  • 0   7 простых советов по использованию зубной пасты, которые легко решат бытовые неурядицы сегодня, 10:46
  • 0   Котлеты по-цыгански: Как улучшить вкус мясного блюда, добавив всего один ингредиент сегодня, 09:24
  • +1   Cadillac BLS — автомобиль, который разработали в Швеции, выпускали в России, а в Америку он так и не попал 22.11.2018, 22:43
  • 0   Современный интерьер: 20 практичных идей, которые помогут преобразить гостиную 22.11.2018, 22:03
  • +1   15 маленьких «звоночков», которые выдают в человеке неряху 22.11.2018, 21:08
  • 0   Как использовать скотч: 7 гениальных в своей простоте идей, которые облегчат жизнь 22.11.2018, 20:09
  • 0   В Исландии открылся отель с номерами в виде мыльных пузырей: они абсолютно прозрачные 22.11.2018, 18:27
  • 0   Министерство обороны России рассекретило инструкцию по уничтожению танков «Тигр» времен Второй мировой войны 22.11.2018, 16:50

Альтернативные источники энергии для дома взаимодействие систем

Большинство устройств и оснащения работают со стихиями, которые невозможно контролировать и регулировать – ветер и солнечные лучи

При проектировании крайне важно разработать такую схему, чтобы не было переработки оборудования и все источники ресурсов могли переводить один вид энергии в другой, накапливать, выполнять дополнительные функции. Таким образом, увеличивается работоспособность оснащения, уменьшается износ, появляется возможность получения параллельных потоков энергии

компанией ИнноваСтрой тесно связано с обеспечением работоспособной замкнутой сети, где будут объединены следующие устройства:

 

  • Аккумуляторные батареи, накапливающие электроэнергию с регулятором степени зарядки и заполнения;
  • Преобразование тока до приемлемого уровня в 220В или 380В;
  • Нагрев воды или передача избыточной энергии на тэны и нагреватели, которые могут накапливать определенное количество горячей воды;
  • Перераспределение потоков энергии между различными потребителями, чтобы максимально рационально использовать запасы в случае простоя коттеджа в течение некоторого времени;
  • Симбиотическое взаимодействие, позволяющее получать стабильный поток энергии в течение всего года в различных климатических и погодных условиях.

Тепловые насосы создают тепло из всего

Принцип их действия основан на циклах Карно. Говоря более простым языком, это большой холодильник, который при охлаждении окружающей среды, забирает у нее низкопотенциальную энергию и преобразовывает ее в тепло с высоким потенциалом. Окружающая среда может быть любой: земля, вода, воздух. В любое время года они содержат малую долю тепла. Устройство имеет достаточно сложное устройство и состоит из нескольких основных компонентов:

  • Наружный контур, заполненный природным теплоносителем.
  • Внутренний контур с водой.
  • Испаритель.
  • Компрессор.
  • Конденсатор.

В системе, как и в холодильнике применяют фреон. Наружный контур может быть помещен в водяную скважину или в открытый водоем. Иногда даже просто в землю закапывают этот контур, но это требует больших затрат.

Рассмотрим процесс самостоятельного изготовления теплового насоса. Первым делом необходимо раздобыть компрессор. Можно снять его с кондиционера. Достаточно будет мощности на нагрев 9,7кВт.

Компрессор от кондиционера с мощностью 9,7 кВт прекрасно подойдет для создания теплового насоса.

Вторая важная деталь – это конденсатор. Его можно сделать из обычного бака объемом 120 литров. Главное, чтобы он был не подвержен коррозии. Бак режут на две части и вставляют внутрь змеевик из меди. На выходы змеевика крепят двухдюймовые соединения для монтажа контура. Бак сваривают с помощью сварочного аппарата. Площадь змеевика нужно вычислить заранее по формуле: ПЗ = МТ/0,8РТ, где: ПЗ — площадь у змеевика; МТ — Мощность тепловой энергии, которую выдает система, кВт; 0,8 — коэффициент теплопроводности при протекании воды вокруг меди; РТ — разница между температурами воды на входе и на выходе в градусах Цельсия. Змеевик можно изготовить самостоятельно, путем наматывания трубы на любой цилиндр. Внутри него будет циркулировать фреон, а в баке вода из системы отопления. Она будет нагреваться при конденсации фреона.

Змеевик для конденсатора теплового насоса.

Для изготовления испарителя потребуется пластиковая тара, имеющая объем не менее 130 литров. Горловина этого бака должна быть широкой. В него тоже помещают змеевик, который будет соединен с предыдущим в единый контур через компрессор. Выход и вход испарителя делают с помощью обычной канализационной трубы. Через него будет протекать вода из водоема или скважины, которая обладает энергией, достаточной для испарения фреона.

Так выглядит испаритель теплового насоса

Работает такая система следующим образом: испаритель помещается в водоем или скважину. Вода, огибая его, вызывает испарение хладагента, который поднимается по трубам из испарителя в конденсатор. Там он конденсируется, отдавая тепло окружающей змеевик воде. Эта вода циркулирует по трубам отопления с помощью центробежного насоса, обогревая помещение. Хладагент компрессором вновь отправляется в испаритель, и цикл повторяется вновь и вновь.

Схема работы теплового насоса «вода-вода».

Рассмотренный нами агрегат способен обогреть помещение в 60 м2 в любое время года. При этом энергия берется из окружающей среды.

Как сделать ветрогенератор

Солнечные электростанции не работают ночью и в пасмурную погоду, а электричество требуется всегда. Поэтому, проектируя альтернативную энергетику для дома своими руками, нужно предусмотреть в ней генератор, не зависящий от солнца.

Для использования в качестве второго источника энергии отлично подойдёт ветрогенератор. Его можно собрать даже из б/у запчастей, что существенно сэкономит ваши средства.

Список того, что понадобится для сборки ветряка:

  1. Генератор с магнитным возбуждением от грузовика или трактора.
  2. Труба с наружным диаметром 60 мм и длиной 7 метров.
  3. Полтора метра трубы с внутренним диаметром 60 мм.
  4. Стальной трос.
  5. Скобы и колышки для крепления троса.
  6. Провода, сечением 4 мм².
  7. Повышающий редуктор 1 к 50.
  8. ПВХ труба, диаметром 200 мм.
  9. Диск от циркулярной пилы.
  10. Два разъёма EC-5.
  11. Кусок стального листа, толщиной 1 мм.
  12. Лист алюминия, толщиной 0,5 мм.
  13. Подшипник под внутренний диаметр мачты.
  14. Муфта для соединения валов генератора и редуктора.
  15. труба под внутренний диаметр подшипника, длина — 60 см.

Все эти материалы продаются в строительном и в автомагазине. Новые редукторы с генератором стоят дорого, поэтому их лучше купить на барахолке.

Изготовление ветроколеса для дома

Главным элементом любого ветряка являются лопасти, поэтому их нужно изготовить первыми.

Чтобы определиться с размерами, используйте таблицу.

Ветроколесо по мощности в идеале должно совпадать с генератором, но из-за чрезмерно больших размеров получающегося колеса это не всегда возможно. Поэтому чаще всего мощность лопастей значительно ниже таковой у генератора. В этом нет ничего страшного.

Разрежьте ПВХ трубу на отрезки, равные длине лопастей. Распилите их пополам по продольной оси. Перерисуйте на половинки трубы разметку и по ней вырежьте лопасти. Отпилите от заготовок треугольники. Из стального листа вырежьте крепления для лопастей и просверлите в них дырки. Возьмите диск от циркулярной пилы, насверлите в нём отверстий и болтами прикрутите лопасти к диску.

Сборка, установка и подключение

Выройте яму и забетонируйте в ней трубу с внутренним диаметром 60 мм. Возьмите семиметровую трубу и, отступив 1 метр от края, установите на неё скобы. Вварите в тот же край трубы подшипник, используя аргонную сварку.

Согните из стального листа раму и снизу приварите к ней трубу, которая влезает в подшипник. Закрепите на раме редуктор с генератором, соединив их валы. Установите снизу рамы и на верхушке мачты 2 ограничителя в виде штырей. Они не дадут раме поворачиваться больше, чем на 360 градусов. Сделайте флюгер из алюминиевого листа и закрепите его на задней части рамы. В основании мачты просверлите отверстие для провода.

Подключите к генератору провод и протяните его сквозь раму и мачту. Оденьте на вал редуктора ветроколесо и закрепите его на нём. Вставьте раму в подшипник и покрутите её. Она должна легко вращаться.

Ветряк в сборе выглядит примерно так:

  1. Лопасти.
  2. Диск от циркулярки.
  3. Редуктор.
  4. Соединительная муфта.
  5. Генератор.
  6. Флюгер.
  7. Крепление флюгера.
  8. Подшипник.
  9. Ограничители.
  10. Мачта.
  11. Провод.

Вбейте в землю колышки так, чтобы расстояние от мачты до каждого из них было одинаковым. Привяжите тросы ко скобам на мачте. Для установки мачты нужно вызывать автокран. Не пытайтесь установить ветрогенератор самостоятельно! В лучшем случае вы разобьёте ветряк, в худшем — пострадаете сами. После поднятия мачты автокраном, направьте её основание в забетонированную ранее трубу и дождитесь, пока кран опустит её в трубу.

Трос нужно привязывать к колышку в натянутом состоянии. Причём все тросы должны быть привязаны так, чтобы мачта стояла строго вертикально, без перекосов.

Подключать ветрогенератор нужно к зарядному устройству через разъём ЕС-5. Сама зарядка устанавливается в щитке с оборудованием СЭС и подключается напрямую к аккумулятору.

Чтобы не лишиться бытовой техники, во время грозы всегда отключайте ветряк от зарядного устройства.

Сборка электростанции закончена. Теперь вы не останетесь без электричества, даже если вам отключат свет на длительное время. При этом не придётся тратить деньги на топливо для генератора и время на его доставку. Все будет работать автоматически и не потребует вашего вмешательства.

Что выбрать

Давайте разберёмся, какой вариант альтернативной энергии лучше. Солнечные батареи являются наиболее предпочтительным вариантом из-за простоты и экологичности. Однако они не работают в ночное время суток.

Ветрогенераторы хорошо подходят для местностей, где постоянно дуют сильные ветры. Функционируют и днём, и ночью, но если потоки воздуха ослабевают – эффективность становится равна нулю. Наилучшим вариантом является комбинация этих двух устройств. Тогда вы можете быть почти на 100% уверенными, что никогда не останетесь без электричества.

Остановите свой выбор на биогазовой установке, если держите в хозяйстве коров, свиней или кур, или неподалёку есть ферма, откуда можно брать отходы для переработки.

А если вы нуждаетесь в горячем водоснабжении и отоплении, дополните систему дома тепловыми насосами. Они не требовательны в обслуживании, отсутствует необходимость покупать и где-то складировать топливо, как в случае, например, с твердотопливным котлом.

Отопление для частного дома альтернативные источники энергии

Среди наиболее распространенных способов получения электроэнергии является движущая сила ветра. Достаточно поставить около загородного дома высокую мачту с движущимися лопастями, соединенными с генератором, чтобы получать электрический ток и заряжать аккумуляторы.

Для получения тепла, можно использовать тепловые насосы, при их использовании, можно брать тепло практически из любого места:

  • Воздуха;
  • Воды;
  • Земли.

Принцип их работы, как в холодильнике, только при прокачивании через насос воздуха или воды, получается тепло. Самодельные конструкции, ничуть не уступают промышленным. В домашних условиях можно самостоятельно изготовить подобные конструкции достаточно найти чертежи и изготовить ветряк, чтобы получить дешевое электричество буквально из воздуха. Есть и другие виды и возможности получить электроэнергию и отопление для частного дома.

Эффективно использование обыкновенного генератора, особенно в северных регионах России, так как, при недостатке солнечного света, панели просто бесполезны.

То же самое касается и тепловых конвекторов, которые предназначены для нагрева воды. Несколько проще для получения тепла использование котла на биотопливе, в качестве материала для топки используются прессованные опилки, гранулы, в том числе и из соломы и торфа. Но такие котлы на биотопливе стоят несколько дороже, чем работающие на газе.

Самодельная гидроэлектростанция

При наличии на участке ручья или водоёма с плотиной дополнительным источником альтернативной электроэнергии станет самодельная гидроэлектростанция. В основе устройства лежит водяное колесо, а мощность будет зависеть от скорости течения воды. Материалы для изготовления генератора и колеса можно взять от автомобиля, а обрезки уголка и металла найдутся в любом хозяйстве. Кроме этого, понадобится кусок медного провода, фанера, смола полистироловая и неодимовые магниты.

Самодельная гидроэлектростанция

Последовательность работ:

  1. Делается колесо из 11 дюймовых дисков. Из стальной трубы изготавливаются лопасти (режем трубу вдоль на 4 части). Потребуется 16 лопастей. Диски стягиваются болтами, зазор между ними 10 дюймов. Лопасти привариваются сваркой.
  2. Изготавливается сопло по ширине колеса. Его делают из обрезка металла, выгнув по размеру и соединив сваркой. Сопло настраивают по высоте. Это позволит отрегулировать водяной поток.
  3. Сваривается ось.
  4. Устанавливается колесо на ось.
  5. Делается обмотка, заливаются смолой катушки – статор готов. Собираем генератор. Из фанеры изготавливается шаблон. Устанавливают магниты.
  6. Генератор защищают металлическим крылом от водяных брызг.
  7. Колесо, ось и крепежи с соплом покрывают краской для защиты металла от коррозии и эстетического удовольствия.
  8. Регулировкой сопла добиваются наибольшей мощности.

Самодельные устройства не требуют больших капиталовложений и производят энергию бесплатно. Если совместить несколько видов альтернативных источников, то такой шаг ощутимо снизит расходы на электроэнергию. Для сбора агрегата понадобятся только умелые руки и ясная голова.

Энергия солнца и кремниевые панели

Большинство проектов по освоению альтернативных источников связано с солнечной энергией. Компании-производители солнечных батарей активно рекламируют преобразователи и панели, как наиболее выгодные, экологичные и бесшумные. Но не все так просто. Прежде чем покупать и устанавливать солнечные панели в качестве главного источника тепла, стоит помнить о некоторых недостатках подобного способа получения альтернативной энергии:

  • Высокая стоимость солнечной электроэнергии, на сегодня разница составляет 2,5 раза в сравнении с тарифом электросетевых компаний;
  • Небольшая мощность источника энергии. С одного квадратного метра панели в солнечный день можно получить не более 150 Вт альтернативной электроэнергии, при том, что стоимость самой панели составляет около сотни долларов;
  • Сложность ремонта и ограниченный срок службы солнечных кремниевых панелей.

Перечисленные недостатки альтернативного солнечного источника энергии, которыми любят пугать чиновники электросетевых компаний, прежде всего, связаны с высокой стоимостью солнечного элемента. По оценкам специалистов, снижение розничной цены на кремневые батареи всего на 60% приведет к взрывному спросу на альтернативные источники солнечной электроэнергии.

Важно! Для установки солнечной батареи на крыше частного дома не нужны согласования и разрешения местных властей, если система не будет сопряжена с вводным контуром проводки электросетевой компании.

Потомки ветряных мельниц, вырабатывающие киловатты

В устройстве ветряков ничего сложного нет. Не зря наши предки использовали энергию ветра так обыденно. Принципиально ничего не изменилось. Просто вместо жернов мельницы был установлен привод на генератор, который преобразует вращательную энергию лопастей в электричество.

Так выглядят большинство современных ветрогенераторов.

Для изготовления ветрогенератора понадобится: высокая башня, лопасти, генератор и накопительная батарея. Придумать надо и простейшую систему управления и распределения электричества. Рассмотрим один из способов сооружения ветряка самостоятельно

Не будем фокусировать внимание на устройстве башни и лопастей, здесь нет ничего сложного для того, кто хоть что-то смыслит в механике. Остановимся на генераторе

Можно, конечно, приобрести готовый генератор с необходимыми параметрами, но наша задача создать ветряк самостоятельно. Если у вас есть двигатель от старой стиральной машины, и он работает, то дело решено. Нам нужно будет переделать его в генератор. Для этого приобретем неодимовые магниты.

Ротор генератора растачиваем на токарном станке, делая углубления для магнитов. В них на суперклей приклеиваем магниты. Заворачиваем ротор в бумагу, а расстояние между магнитами заливаем эпоксидной смолой. Когда она засохнет – убираем бумагу, а ротор шлифуем наждачкой. Внимание! Чтобы магниты не залипали, их нужно установить с небольшим наклоном. Теперь при вращении ротора, магниты будут образовывать разность потенциалов, которую снимают с помощью клемм.

Так приклеиваются магниты на ротор двигателя стиральной машины.

Ток и тепло своими руками альтернативная энергетика для дома

Дармовая электроэнергетика для квартиры или частного дома всегда интересовала людей, так как в последние годы тарифы на отопление и электроэнергию только лишь растут. И для экономии, многие люди стараются найти варианты получения тепла и энергии даром. Для этого изготавливают разные системы, в том числе пытаются изобрети вечный источник, и придумывают необычные и новые способы получения тока и тепла.

Относительная бесплатная энергетика (сборка солнечных панелей своими руками):

  • Можно приобрести части солнечной батареи в Китае;
  • Самостоятельно все собрать;
  • Как правило, к каждому комплекту прилагается схема сборки.
  • Все это позволяет самостоятельно собрать панель и схему питания, в частности квартиры или частного дома.

Безтопливная халявная энергетика получается из электромагнитных волн – любые колебания можно преобразовать в электричество. Правда КПД таких схем очень мал, но, тем не менее, с помощью специально сделанных приборов можно заряжать телефоны и прочую мелкую бытовую технику.

Правда зарядка займет довольно длительное время.

Для получения тепла, некоторые умельцы используют метан, который в свою очередь получают из навоза животных и прочих отходов. Правильно сделанная система является хорошим вариантом для получения тепловой энергии и обогрева дома, а также для приготовления пищи.

Минимальные требования к домашнему источнику электроэнергии

Перед выбором самого простого генератора для дома следует учесть только основные приборы, которые он должен питать, и подбирать его по их параметрам. Например, если электричество отключают всего на несколько часов, то можно исключить работу холодильников и морозильников, ибо они способны держать холод в течение этого периода.

Минимальные функции бюджетного источника электрической энергии способен обеспечить обыкновенный автомобильный аккумулятор с напряжением 12 вольт любой мощности, но, желательно — увеличенной. К нему можно подключить:

  1. резервное освещение на основе нескольких светодиодных светильников;

ноутбук, компьютер или цифровой телевизор напрямую к выходным цепям блока питания. Этим исключается двойное преобразование постоянного и переменного напряжений 12 вольт в 220 и назад.

Аккумулятор будет питать эти приборы и постепенно разряжаться. Для его подзаряда достаточно использовать снятый с автомобиля генератор, ротор которого можно крутить велосипедным тренажером.

С этой целью заднее колесо велосипеда просто вывешивают на подставке, а на одну из его свободных звездочек устанавливают вторую цепь, которая будет передавать крутящий момент от педалей на ротор автомобильного генератора.

Можно использовать любой другой доступный способ передачи энергии вращения, например, за счет создания прямого контакта от покрышки колеса прямо на наконечник оси ротора.

За счет такой простой конструкции удобно заниматься на велотренажере и одновременно смотреть телевизионные передачи или пользоваться интернетом с ноутбука или компьютера. В условиях дефицита физических нагрузок это довольно неплохой способ поддержания здоровья и одновременной экономии электроэнергии для дома.

Биогазовые установки

Используют для работы различные отходы жизнедеятельности, например, от домашних или сельскохозяйственных животных и птиц. В герметичной ёмкости они подвергаются обработке анаэробными бактериями, которые в свою очередь выделяют биогаз.

Чтобы процесс шёл быстрее, отходы нужно периодически перемешивать, для чего используется ручная или механическая мешалка.

Биогаз п

Альтернативные источники энергии: виды, плюсы и минусы

Для получения любого вида энергии необходим определенный источник. Как известно, существуют традиционные и нетрадиционные источники энергии, то есть альтернативные.

Традиционными источниками энергии являются нефть, уголь, природный газ. Запасы данных источников энергии исчерпаемы, подлежат длительному восстановлению, а также отрицательно отражаются на экологическом состоянии планеты. Поэтому, большинством стран мира в качестве основного направления развития энергетики определено производство энергии с помощью альтернативных источников энергии. Альтернативные источники энергии относятся к возобновляемым ресурсам, они более экологичны и экономичны.

Основная классификация альтернативных источников энергии

№ п/п Вид альтернативного источника энергии Способ применения
1 Энергия солнечного излучения Фотоэлектрическая панель (ФЭП)

Солнечный коллектор

Солнечная электростанция (СЭС)

2 Энергия ветра Ветроэнергетическая установка (ВЭУ)

Ветряная электростанция (ВЭС)

3 Гидроэнергия Гидроэлектростанция (ГЭС)
4 Энергия приливов и отливов Приливная электростанция (ПЭС)
5 Энергия волн океанов и морей Волновая электростанция (ВЭС)
6 Геотермальная энергия Геотермальная станция (ГеоТЭС)
7 Энергия биомассы (биоэнергия) Переработка твердых, жидких и газообразных видов биотоплива термохимическими, физико-химическими, либо биохимическими методами

Энергия электромагнитного солнечного излучения

Она может использоваться для выработки как электроэнергии, как и тепловой энергии. Прямое преобразование солнечной радиации в электроэнергию производится как путем прямого преобразования за счет явления внутреннего фотоэффекта на фотоэлектрических панелях, так и косвенно с использованием термодинамических методов (получение пара с высоким давлением).

Солнечная электростанция

Получение тепловой энергии из солнечной производится за счет поглощения данной энергии и дальнейшего нагрева поверхности и теплоносителя, как специальными коллекторами, так и при помощи использования приемов «солнечной архитектуры».

Совокупность установок для преобразования энергии Солнца составляет солнечную электростанцию.

Кинетическая энергия ветра

Она служит для преобразования в механическую, тепловую, а также, чаще всего, в электроэнергию. Чтобы получить механическую энергию из кинетической энергии воздушных масс применяют элементарные ветряные мельницы. Однако, для дальнейшего преобразования полученной механической энергии необходимо использование ветрогенератора.

Ветрогенератор позволяет преобразовать механическую энергию вращения ротора в электрическую энергию. Существует возможность накопления полученной электроэнергии при помощи аккумуляторных батарей и использования только при необходимости. Такая установка будет называться ветроэнергетической, или ветроустановкой. Совокупность нескольких ветроустановок будет называться ветряной электростанцией.

Преобразование ветровой энергии в тепловую энергию может производиться как косвенно (путем преобразования механической энергии в электрическую энергию, и затем, использованием полученной энергии для питания электрических приборов отопления), так и напрямую (прямое преобразование механической энергии в тепловую с нагревом теплоносителя производится путем применения вихревого теплогенератора)

Гидроэнергия

Гидроэнергия представляет собой солнечную энергию, преобразованную в потенциальную энергию, накопленную в плотине или водохранилище естественных и искусственных водоемов. Гидроэнергию можно преобразовывать в механическую либо электроэнергию с помощью гидротурбин. Данные установки называют гидроэлектростанциями (ГЭС).

Энергия приливов и отливов

Преобразование энергии приливов и отливов в электроэнергию производится на приливных электрических станциях двумя способами:

  1. Первый способ по принципу преобразования энергии аналогичен преобразованию энергии на гидроэлектростанции путем вращения турбины, связанной с электрогенератором;
  2. При втором способе используется энергия движения воды; данный способ основан на перепаде уровня воды при приливах и отливах.

Энергия волн

Энергия волн используется для получения механической и электрической энергии. Преобразование происходит на специальных волновых электростанциях, принцип работы которых основан на оказании воздействия волн на следующие применяемые устройства: поплавки, маятники, лопасти. Перемещение данных устройств образует механическую энергию, которая далее при помощи электрогенератора преобразуется в электроэнергию.

Геотермальная энергия или энергия тепла Земли

Она может использоваться по прямому назначению, либо для получения электроэнергии. Преобразование энергии происходит на геотермальных станциях – ГеоТЭС.

Источники геотермальной энергии могут быть высоко- и низкопотенциальными. К высокопотенциальным источникам относятся гидротермальные ресурсы (термальная вода). Их применяют для отопления помещений.

Низкопотенциальные источники энергии, в свою очередь, бывают естественными (воздух атмосферы, грунтовая вода, сам грунт) и искусственными (вентиляционный воздух помещения, отработанные воздух, вода или тепло). Данные источники применяют для кондиционирования, теплоснабжения и горячего водоснабжения.

Биоэнергия

Биоэнергию производят из разных видов биологического сырья, которое получается после переработки биоотходов. Из твердых (щепа, пеллеты, древесина, солома), жидких (биоэтанол, биометанол, биодизель) и газообразных (биогаз, биоводород) видов биологического топлива путем термохимических (пиролиз, сжигание), физико-химических (биоконверсия), либо биохимических (анаэробное брожение биомассы) методов преобразования получают тепловую или электрическую энергию.

Преимущества и недостатки альтернативных источников энергии следует рассматривать в индивидуальном порядке, однако выделим несколько общих плюсов и минусов, характерных для всех источников.

Плюсы использования альтернативных источников энергии

  • Возобновляемость
  • Экологический аспект.
  • Широкое распространение, доступность.
  • Низкая себестоимость производства энергии в обозримом будущем.

Минусы применения альтернативных источников энергии

  • Непостоянство, зависимость от погодных условий и времени суток.
  • Невысокий коэффициент полезного действия (за исключение водных источников энергии).
  • Высокая стоимость
  • Недостаточная единичная мощность установок.

Похожие записи

что это такое, виды, конкретные примеры

Потребление электроэнергии в мире постоянно возрастает. Внедряются энергосберегающие технологии, однако одновременно растет количество приборов и цифровых устройств. При этом запасы горючих ископаемых уменьшаются.

Получение энергии путем сжигания вредит окружающее среде за счет выбросов продуктов сгорания и выделяемого тепла. Альтернативная энергетика лишена многих проблем традиционных способов получения энергии.

Что такое альтернативная энергетика?

Само название альтернативной энергетики говорит, что это энергетика, которая отличается от традиционной. В традиционной энергетике используются такие ресурсы, которые невозможно восполнить, и когда-нибудь они закончатся. Альтернативная энергетика – это комплекс мер получения, передачи и использования энергии возобновляемых природных ресурсов.

Россия отстает от многих стран мира по применению альтернативных источников. Основная причина – большие запасы ископаемого топлива. Пока доля возобновляемых источников в энергетике страны мала, но каждый год вводятся в эксплуатацию новые электростанции, работающие на альтернативной энергии:

  • солнечной;
  • ветровой;
  • приливной;
  • геотермальной и других.

Развитие альтернативной энергетики

Использование «зеленой» энергии считается новым методом, но попытки применения возобновляемых ресурсов в энергетике ведут историю с 18 века:

  1. В 1737-1753 французский математик Бернар Форест де Белидор написал трактат «Гидравлическая архитектура». В нем содержится 200 чертежей гидотехнических сооружений, описана идея создания «солнечного насоса».
  2. В 1846 г. Построена первая ветроустановка по проекту Поля ла Круа.
  3. 1861 г. – запатентовано изобретение солнечной электростанции.
  4. 1881 г. – построена первая ГЭС на Ниагарском водопаде.
  5. 1913 г. – под руководством итальянского инженера Пьеро Джинори Конти построена первая геотермальная ЭС.
  6. 1931 г. – первая промышленная ветровая станция в Крыму.
  7. 1966 г. – во Франции запустили первую электростанцию, работающей на энергии волн.

Нефтяной кризис 1973 года дал новый стимул развитию возобновляемой энергетики. Ряд аварий на электростанциях на рубеже веков повысил интерес инженеров к «зеленым» источникам.

Плюсы и минусы использования

Не существует идеального энергоресурса, у каждого вида есть свои преимущества и недостатки. Плюсы альтернативных источников:

  • возобновляемость: солнце, ветер, приливы, круговорот воды не закончатся миллиарды лет;
  • относительная экологическая безопасность;
  • низкая себестоимость электроэнергии.

Альтернативная энергетика не лишена недостатков, к которым относятся:

  • невысокий КПД установок, в среднем 10-20%;
  • низкая мощность генераторов, за исключением ГЭС;
  • зависимость от погоды;
  • дорогое строительство и монтаж установок.

Виды альтернативной энергетики

Альтернативная энергетика включает в себя несколько видов. Тип источника энергии определяет способы получения электричества и тепла, а также конструкцию и требования к расположению генерирующих установок.

Солнечная энергетика

Гелиоэнергетика основана на получении энергии из солнечного излучения. Выработка электричества основана на фотоэлектрическом эффекте: совокупности процессов, происходящих в полупроводниках под воздействием света. Солнечные батареи применяют и на промышленных электростанциях, ив частном порядке. Гелиоэнергетика имеет свои плюсы и минусы. Достоинства:

  • доступность и неисчерпаемость источника энергии;
  • полная безопасность для окружающей среды в процессе эксплуатации.

Но есть и недостатки:

  • зависимость от погоды, времени суток и сезона;
  • высокая стоимость оборудования;
  • необходимость дублирования другим источником энергии или накопления в аккумуляторах;
  • сложность производства и утилизации солнечных батарей, связанная с присутствием в них ядовитых веществ;
  • задействование больших площадей для размещения фотоэлементов;
  • необходимость очистки поверхностей батарей от загрязнений.

Несмотря на сложности, совокупная мощность солнечных установок в мире растет на 40-60% в год. Она превышает 1% от всего мирового энергопотребления.

Разновидность солнечной энергетики – гелиотермальная. Она применяется для преобразования солнечной радиации в тепло воды или другого энергоносителя. Гелиотермальная установка представляет собой вогнутое зеркало, которое концентрирует солнечные лучи и направляет на резервуар с жидкостью. При кипении воды паровой генератор преобразует энергию испарения в электрическую. Этот способ применяется и для бытового нагрева воды.

В России в 2016 году фотоэлементы выдавали общую мощность 60 МВт, в 2018 – 534 МВт, а в 2019 – уже 834 МВт. Самые мощные СЭС расположены в Крыму, средние – в других южных регионах: Астраханской, Самарской, Оренбургской областях, Республике Алтай.

Ветровая энергетика

Применение энергии ветра в России осложняется тем, что большая часть мест с сильными ветрами находится в труднодоступных районах Крайнего Севера. Доля ветровых станций в энергобалансе страны невелика, общая мощность станций составляет 200 МВт.

Наиболее мощные ветроэлектростанции построены в Адыгее, Ульяновской области и в Крыму. В стадии проектирования и строительства находятся станции с общей мощностью 2,5 ГВт. Энергия ветра – чистая и возобновляемая. При подключении ветровых турбин к общей электросети страны безветренная погода не вызывает перебоев электроснабжения. В автономном режиме к ветрогенераторам подключают мощные аккумуляторы, чтобы накопить энергию для безветренных периодов.

Гидроэнергетика

Гидроэлектростанции используют возобновляемый источник энергии, но относятся скорее к традиционным видам энергетики. К альтернативной энергетике причисляют ГЭС малой мощности. В России гидроэлектростанции строятся с конца 19 века, и в наше время дают пятую часть электроэнергии.

Общая мощность всех российских ГЭС превышает 48 ГВт. Принцип работы знаком каждому со школьной скамьи: вода из водохранилища под напором поступает на лопасти турбины, которая приводит в действие генератор. Строительство ГЭС осложняется затоплением больших площадей земли, включающих леса, поля, населенные пункты. Аварии на гидроэлектростанциях приводят к катастрофическим последствиям.

К видам гидроэнергетики относятся энергоустановки, работающие на энергии волн и приливов. Электростанции таких типов строятся на берегах морей. В Мурманской области экспериментальная приливная электростанция действует с 1968 года. Несколько подобных станций находится на этапе проектирования.

В мире разрабатываются и тестируются новые методы получения энергии из вод: конденсация влаги из атмосферы и температурный градиент морской воды.

Геотермальная энергетика

Геотермальные электростанции используют энергию недр Земли. Термальные воды применяют не только для выработки электричества, но и для отопления, горячего водоснабжения. Недостаток этого источника энергии в том, что для достижения достаточно горячей воды приходится бурить скважину глубиной несколько километров.

Сложно и само глубинное бурение, и закачка отработанной воды обратно в водоносный горизонт. Это экономически нецелесообразно, поэтому термальные станции строят в местах с вулканической активностью. Выход термальных источников на поверхность дает воду с температурой выше кипения, что обеспечивает высокий КПД электрогенераторов.

Энергия земных недр практически неисчерпаема: ядро остывает на 1 градус за несколько миллионов лет. При этом высвобождается тепло, в тысячи раз превышающее запас энергии во всем известном ископаемом топливе. Геотермальные станции есть в Краснодарском крае и на Курилах, а на Камчатке около 40% электроэнергии имеет геотермальное происхождение.

Биотопливо

Часть биомассы относится к традиционным источникам энергии, например, древесина, опилки. Под альтернативными источниками подразумеваются отходы сельского хозяйства и пищевой промышленности: навоз, свекольный жом, растительные жиры, отбросы рыбопереработки, водоросли.

Топливо на основе биологических отходов бывает в жидком, твердом и газообразном состоянии. Биогаз получается расщеплением отходов тремя видами бактерий. КПД газовых турбин достигает 93%, что намного превышает этот показатель у других видов котлов.

Транспортировка биомассы невыгодна, поэтому энергоустановки размещают в аграрных регионах вблизи источников сырья. Их мощность относительно невелика. Ученые открывают все новые способы получения биотоплива, что решает и энергетическую проблему, и вопрос утилизации сельскохозяйственных отходов.

Термоядерная энергетика

Управляемый синтез тяжелых атомных ядер из более легких – перспективное направление альтернативной энергетики. Исследования этого вида энергетики ведутся с 1950-х годов. Предположительно, рентабельные модели термоядерных электростанций появятся к середине 21 века.

Россия участвует в международном проекте ITER, в рамках которого впервые удалось осуществить безубыточный термоядерный синтез. Сырьем выступает водород, который получают из морской воды. При слиянии ядер нет выбросов продуктов сгорания во внешнюю среду.

В отношении радиации реактор термоядерного синтеза гораздо безопаснее ядерного реактора. Когда вырабатываемая энергия существенно превысит ту, которая затрачивается на дополнительные процессы, термоядерный синтез обеспечит электричеством все человечество.

Мировое использование различных видов альтернативных источников энергии

В наше время гидроэнергетика имеет наибольшую мощность из всех видов энергетики на возобновляемых ресурсах. Некоторые страны из-за особенностей природных условий сместили вектор развития на солнечные и ветровые энергоустановки. Мировые лидеры по доле энергии ветра в общем энергобалансе страны:

  • Дания – 42%;
  • Португалия – 27%;
  • Никарагуа – 21%;
  • Испания – 20%.

В 2014 году в Дании ветроустановки производили 39% от всего электричества, в 2015 году – уже 42%, и доля ветровой энергии продолжает расти.

Рост альтернативной энергетики в Европе достигается за счет ветровых, солнечных и биотопливных энегоустановок. Опережают среднемировые показатели по переходу на «зеленую» энергию США, Китай, Австралия, Германия и страны из предыдущего списка.

В 2010 году 4,9% всей мировой электроэнергии составляла энергия альтернативных источников. В 2018 году доля «зеленой» энергии достигла 8,4%. При подсчете не учитывались крупные ГЭС. По прогнозам, к 2030 году доля альтернативной энергетики составит 35% всего мирового энергопотребления.

Состояние альтернативной энергетики в России

По сравнению со странами ЕЭС, Россия отстает во внедрении альтернативной энергетики. Разработки СССР были заброшены в 90-е годы из-за распада страны. Новые исследования получают недостаточное практическое применение. Развитие альтернативной энергетики в России сдерживается относительной доступностью традиционного топлива.

Немаловажную роль играет сложность в финансировании разработки и строительства новых объектов, когда можно получать энергию на действующих электростанциях. Дорогой кредит также сдерживает инвестиции в новые проекты. Сказывается и нехватка кадров с опытом работы в этой сфере. Несмотря на проблемы российской альтернативной энергетики, ее доля в энергобалансе страны увеличивается. В перспективе энергия ветра может обеспечивать до 10% энергопотребления страны.

Применение и перспективы развития различных видов альтернативных источников энергии

Жители частных домов охотнее покупают и устанавливают солнечные батареи, если государство покупает у них лишнюю энергию. Фотоэлементы монтируются на крыше, так они не требуют дополнительной площади. При подключении к общей энергосистеме в темное время суток жители пользуются входящей электроэнергией, за которую платят поставщику электричества.

Днем, во время работы солнечных батарей, энергопотребление в домах снижается, а на предприятиях – растет, поэтому образуется излишек электроэнергии. Электросчетчики могу считать электричество в обе стороны, но в России опция учета исходящей энергии у счетчиков отключена. Альтернативная энергетика в Германии и Нидерландах развивается быстрее отчасти благодаря возможности продавать пиковый излишек электричества государству. Техническая сторона несложна, дело за законодательной базой.

Размеры России способствуют развитию нетрадиционных видов энергетики. Когда на Дальнем Востоке наступает ночь, в европейской части страны еще светло. При подключении солнечных электростанций к общей энергосистеме выработка электричества фотоэлементами в среднем по стране выравнивается в течение суток.

Когда на севере страны безветренная погода, достаточно сильный ветер может быть в восточной части или на юге. В то же время, в стране есть множество труднодоступных мест, в которые сложно протянуть линию электропередач. Удаленные районы целесообразно обеспечить энергией из альтернативных источников. Несмотря на нынешнее отставание, будущее у альтернативной энергетики в России определенно есть.

Факторы, ускоряющие внедрение нетрадиционных энергоресурсов

Из-за истощения запасов топливных энергоресурсов переход на нетрадиционную энергетику неизбежен. Прочие предпосылки развития альтернативной энергетики в мире:

  • сокращение сроков окупаемости альтернативных энергоустановок;
  • социальная напряженность, вызванная ростом плотности населения и ухудшением экологической обстановки;
  • постоянно возрастающая сложность добычи ископаемого топлива;
  • престижность лидерства в освоении альтернативной энергетики.

Альтернативные источники энергии уже сейчас в лидирующих странах не уступают традиционным. В будущем и в нашей стране они из экзотики превратятся в привычную реальность.

7 лучших альтернатив IFTTT, о которых вы, возможно, не слышали

IFTTT бесплатен и популярен.Но как инструмент автоматизации это не единственная игра в городе. Давайте посмотрим на семь мощных альтернатив IFTTT.

IFTTT заработал репутацию ведущего приложения для автоматизации.Используя серию условных операторов, вы можете заставить определенные события запускать определенные действия.

Популярность IFTTT выросла по двум основным причинам.Во-первых, его можно использовать бесплатно. Во-вторых, он интегрируется с огромным количеством сервисов.

Но то, что IFTTT настолько популярен, не означает, что вам не следует проверять некоторые альтернативы IFTTT.Некоторые из них предназначены для бизнеса, некоторые – для частных лиц. Какой из них вам подходит, зависит от ваших потребностей.

Zapier, возможно, самая известная альтернатива IFTTT – действительно, это один из ведущих конкурентов IFTTT.Он работает во многом аналогично своему конкуренту: вы можете соединять приложения и устройства вместе, чтобы определенные события приводили к точным результатам.

Приложение использует «Zaps» для подключения приложений и сервисов.Он нацелен на пользователей, которые хотят создавать сложные последовательности, поэтому поддерживает множество нишевых сервисов, а также возможность добавлять несколько шагов действий в один Zap.

Zapier предлагает три ценовых категории.Уровень бесплатного пользования ограничивает создание Zap-файлов в два этапа и ограничивает выбор приложений, которые вы можете связать. Уровень за 20 долларов в месяц позволяет выполнять неограниченное количество шагов и вводит фильтры и средства форматирования. Также есть бизнес-уровень за 600 долларов в месяц .

Microsoft Flow был запущен в середине 2016 года.Если вы в значительной степени полагаетесь на набор инструментов для повышения производительности Microsoft, его трудно превзойти; уровень интеграции с этими сервисами не имеет себе равных. Например, вы можете автоматически сохранять вложения электронной почты Office 365 в OneDrive или отправлять электронное письмо с утверждением, когда что-то добавляется в SharePoint.

Ценообразование, ориентированное на бизнес, составляет 15 долларов США за пользователя или 500 долларов США за каждые пять потоков.

Tasker – лучшее приложение для автоматизации в операционной системе Android.Вместо того, чтобы автоматизировать внешние веб-приложения, Tasker фокусируется на автоматизации вашего телефона.

Вы хотите, чтобы Spotify запускался автоматически при подключении наушников? Хотите, чтобы ваш телефон зачитывал сообщения во время вождения? Все возможно.

Приложение сбивает с толку начинающих пользователей – ему не хватает дружественного графического интерфейса, предлагаемого IFTTT и Zapier.Однако, если вы потратите немного времени на изучение веревок, это будет невероятно.

Таскер не является бесплатным.По истечении семидневного пробного периода вам необходимо будет внести единовременный платеж в размере 3,50 долларов США.

Помните, что есть несколько апплетов IFTTT для автоматизации вашего телефона.

4. Интегромат

Наука, лежащая в основе 10 альтернативных методов лечения

Вы бы позвонили бальнеотерапевту, когда у вас высыпается лицо? Как насчет рефлексотерапевта, когда у вас обостряется астма? Какими бы странными они ни казались, альтернативная медицина набирает обороты в США.S.

Мы составили руководство по некоторым из самых популярных альтернативных физиотерапевтических методов, которые стали широко распространенными.

В целом термин «альтернативная терапия» относится к любому лечению, не являющемуся стандартным в западной медицинской практике. При использовании вместе со стандартной медицинской практикой альтернативные подходы называются «дополнительной» медициной.

Кроме того, трудно дать определение дополнительным и альтернативным методам лечения, в основном из-за большого разнообразия их областей.Он включает в себя изменение диеты и физических упражнений, гипноз, регулировку хиропрактики и втыкание игл в кожу человека (акупунктура), а также другие процедуры.

Преимущества альтернативных методов лечения горячо оспариваются. Необходимы дополнительные исследования, чтобы определить эффективность почти всех этих практик, но это не помешало людям проверить их.

В 2008 году (самые последние достоверные данные, которые мы смогли найти) более 38 процентов взрослых американцев использовали те или иные формы альтернативной медицины, согласно данным NIH.Вот некоторые из практик, которые меняют подход американцев к медицинской помощи.

Натуропатическая медицина основана на целительной силе природы, и это обширная ветвь альтернативной медицины.

Врачи-натуропаты обучаются как традиционным, так и альтернативным лекарствам. Они стремятся понять причину состояния, исследуя его психические, физические и духовные проявления у данного пациента.

Натуропатия обычно включает в себя различные методы лечения, включая питание, изменение поведения, фитотерапию, гомеопатию и иглоукалывание.

Акупрессура на практике похожа на иглоукалывание (см. Ниже), только без игл. Практикующие используют руки, локти или ступни, чтобы оказывать давление на определенные точки вдоль «меридианов» тела.

Согласно теории, лежащей в основе акупрессуры, меридианы – это каналы, по которым жизненная энергия (ци или ци) переносится по всему телу. Аргументация гласит, что болезнь может возникнуть, когда один из этих меридианов заблокирован или нарушен баланс.

Считается, что точечный массаж снимает закупорки, поэтому энергия снова может свободно течь, восстанавливая хорошее самочувствие.Необходимы дополнительные исследования, но несколько исследований дали положительные результаты.

В 2013 году исследователи работали с группой подростков, страдающих бессонницей. Они обнаружили, что точечный массаж помогает им быстрее засыпать и спать глубже. Carotenuto M, et al. (2013). Акупрессурная терапия бессонницы у подростков: полисомнографическое исследование. DOI: 10.2147 / NDT.S41892

Акупрессура также может облегчить боль. В 2014 году исследователи провели обзор существующих исследований и обнаружили, что точечный массаж может облегчить ряд проблем, включая надоедливую боль в пояснице, головные боли и даже боль при родах. Chen YW, et al. (2014). Эффективность акупрессуры для снятия боли: систематический обзор. DOI: 10.1016 / j.pmn.2012.12.005

Могут быть даже некоторые преимущества для психического здоровья. Обзор 39 исследований, проведенный в 2015 году, показал, что точечный массаж дает немедленное облегчение людям, испытывающим беспокойство. Au DW и др. (2015). Влияние акупрессуры на тревожность: систематический обзор и метаанализ. DOI: 10.1136 / acupmed-2014-010720

Другое исследование, проведенное в том же году, показало, что точечный массаж 3 раза в неделю в течение месяца помогает снять тревогу, депрессию и стресс у диализных пациентов. Hmwe NT, et al. (2015). Влияние акупрессуры на депрессию, тревогу и стресс у пациентов, находящихся на гемодиализе: рандомизированное контролируемое исследование. DOI: 10.1016 / j.ijnurstu.2014.11.002

Хотя при чтении этой практики традиционной китайской медицины можно сразу вспомнить острые иглы, этот термин фактически описывает стимуляцию определенных точек на теле.

Самая известная разновидность заключается в проникновении в кожу тонких игл, контролируемых практикующим врачом, но также может использоваться электрическая стимуляция.

Некоторое время нам известно, что иглоукалывание может иметь положительные результаты при ПМС, Habek D, et al. (2002). Использование акупунктуры для лечения предменструального синдрома. DOI: 10.1007 / s00404-001-0270-7 бессонница, Cao H и др. (2009). Иглоукалывание для лечения бессонницы: систематический обзор рандомизированных контролируемых исследований. DOI: 10.189 / acm.2009.0041 и многие типы хронической боли, такие как боль в шее и остеоартрит. Vickers AJ, et al. (2012). Иглоукалывание при хронической боли: метаанализ индивидуальных данных пациентов.DOI: 10.1001 / archinternmed.2012.3654

Новые исследования также выглядят многообещающими. Например, исследование 2016 года с участием 2349 человек показало, что иглоукалывание может быть эффективным при напряжении или хронических головных болях, хотя для уверенности необходимы дополнительные испытания. Linde K и др. (2016). Иглоукалывание для профилактики головной боли напряжения. DOI: 10.1002 / 14651858.CD007587.pub2

Думаете, это эффект плацебо? Не так. Метанализ 2017 года подтвердил, что положительные результаты иглоукалывания нельзя объяснить только эффектом плацебо, и поэтому это разумный вариант лечения для тех, кто регулярно сталкивается с хронической болью. Vickers AJ, et al. Иглоукалывание при хронической боли: Обновление метаанализа индивидуальных данных пациента. DOI: 10.1016 / j.jpain.2017.11.005

В ароматерапии используются эфирные масла – высококонцентрированные экстракты корней, листьев, семян или цветков растений – для ускорения заживления. Эту практику можно проследить, по крайней мере, 5000 лет назад. Стефилтиш В. (2017). Ароматерапия – от традиционных и научных данных до клинической практики. DOI: 10.1055 / s-0043-116476

Масла можно вдыхать с помощью диффузора или разводить в масле-носителе и массировать в кожу.Некоторые используются для лечения воспалений или инфекций, а другие – для расслабления и успокоения.

В клинических условиях исследователи сосредоточили свое внимание на ароматерапии при тревоге, депрессии, обезболивании, тошноте и бессоннице. Например, в исследовании 2017 года было обнаружено, что ароматерапия с лавандой способствует сну и снижает тревожность у пациентов с сердечными заболеваниями. Карадаг Э и др. (2017). Влияние ароматерапии на качество сна и беспокойство пациентов. DOI: 10.1111 / nicc.12198

В 2017 году исследователи собрали группу медсестер, работающих в ночную смену, которым было любопытно узнать, поможет ли ароматерапевтический массаж их сну.Оказывается, после массажа сладким эфирным маслом майорана и стакана теплой воды качество сна улучшилось. Chang YY, et al. (2017). Влияние ароматерапевтического массажа на качество сна медсестер во время ежемесячной смены ночной смены.DOI: 10.1155 / 2017/3861273

Если вы слышали, что вдыхание запахов помогает при стрессе, возможно, в этом что-то есть. Хотя в этой области необходимы дополнительные исследования, исследование 2013 года показало, что беременные женщины, которые вдыхали линалоол (содержится в мяте) и линалилацетат (содержится в лаванде), чувствуют себя спокойнее уже через 5 минут. Игараси Т. (2013). Физические и психологические эффекты ингаляций ароматерапии на беременных женщин: рандомизированное контролируемое исследование. DOI: 10.1089 / acm.2012.0103

Примечание: при использовании ароматерапии важно учитывать других людей в этом районе. Некоторые эфирные масла могут быть опасны для беременных женщин, детей или домашних животных. Не наносите их непосредственно на кожу и избегайте длительного воздействия без вентиляции.

Этот метод, также известный как Аюрведа, возник в Индии и существует уже тысячи лет.Практикующие используют различные техники, включая травы, массаж и специальные диеты, с целью уравновесить тело, разум и дух для улучшения общего самочувствия.

Есть несколько исследований, которые показывают положительные результаты для определенных аюрведических практик, таких как прием куркумы при воспалении, He Y, et al (2015). Куркумин, воспаление и хронические заболевания: как они связаны? DOI: 10.3390 / modules20059183 использование Neti pot для очистки пазух (называемое орошением носа), Chen JR, et al.(2014). Эффективность орошения носа физиологическим раствором (морской водой) при лечении аллергического ринита у детей. DOI: 10.1016 / j.ijporl.2014.04.026 или полоскание кокосового масла во рту для удаления бактерий (известное как масляное вытягивание). Shanbhag VK. (2017). Масло для поддержания гигиены полости рта – обзор. DOI: 10.1016 / j.jtcme.2016.05.004

И мы не можем забыть о йоге, которая упоминается в аюрведических текстах. Согласно последним доступным исследованиям, йога снова и снова доказывает, что она помогает решать целый ряд проблем психического и физического здоровья, таких как тревожность, Ross A, et al.(2014). Национальный опрос практикующих йогу: преимущества для психического и физического здоровья. DOI: 10.1016 / j.ctim.2013.04.001 депрессия, высокое кровяное давление, Hagins M, et al. (2013). Эффективность йоги при гипертонии: систематический обзор и метаанализ. DOI: 10.1155 / 2013/649836 и бессонница, среди прочего.

Бальнеотерапия, которую иногда путают с гидротерапией, подразумевает использование воды в лечебных целях, и возникла она еще в 1700 году до нашей эры. По сей день это популярный курс лечения в нескольких европейских странах, например, в термальных ваннах Венгрии.(Да, пожалуйста.) Galvez I, et al. (2018). Бальнеотерапия, иммунная система и стрессовая реакция: горметическая стратегия? DOI: 10.3390 / ijms19061687

Он основан на идее о том, что вода полезна для кожи и может лечить ряд заболеваний, от прыщей до боли, отеков до беспокойства. Практикующие используют грязевые компрессы, спринцевания, длительные замачивания и обертывания в попытках получить множество наград за агуа. По этой причине ее часто называют спа-терапией.

Бальнеотерапия была изучена на предмет ее воздействия на хроническую боль и принесла некоторые положительные результаты.Например, исследование 2015 года показало, что спа-терапия в сочетании с упражнениями может облегчить боль в пояснице в долгосрочной перспективе. Однако стоит отметить, что исследователи заявили, что необходимы более качественные исследования. Карагулле М. и др. (2015). Эффективность бальнеотерапии и курортной терапии для лечения хронической боли в пояснице: обзор последних данных. DOI: 10.1007 / s10067-014-2845-2

Сторонники терапии ссылаются на открытия, согласно которым минеральная вода может укреплять иммунную систему людей или способствовать развитию артрита, но пока эти исследования остаются безрезультатными.

Методы биологической обратной связи позволяют людям контролировать процессы в организме, которые обычно происходят непроизвольно, например, частоту сердечных сокращений, артериальное давление, мышечное напряжение и температуру кожи, чтобы улучшить условия, включая высокое кровяное давление, головные боли и хронические боли.

Пациенты работают с терапевтом с биологической обратной связью, чтобы изучить эти техники релаксации и умственные упражнения. На начальных сеансах к коже прикрепляются электроды для измерения состояния тела, но в конечном итоге методы можно практиковать без терапевта или оборудования.

Исследователи до сих пор не знают, как и почему работает биологическая обратная связь, но многие исследования показывают, что работает и . Расслабление кажется ключевым компонентом, поскольку большинство людей, которым полезна практика, имеют состояния, вызванные или усугубляемые стрессом.

Во время биологической обратной связи вы лучше осознаете, как вы физически реагируете на стресс, упражнения или эмоции. В свою очередь, вы можете научиться уменьшать негативное воздействие на свой организм и здоровье.

В 2017 году исследователи собрали 451 запись о биологической обратной связи и спортивных результатах.Из всех статей они нашли семь, требующих углубленного изучения. Результаты были впечатляющими: 85 процентов спортсменов улучшили свои показатели, изменив собственный пульс с помощью биологической обратной связи. Jimenez MS, et al. (2017). Влияние биологической обратной связи вариабельности сердечного ритма на спортивные результаты, систематический обзор. DOI: 10.1007 / s10484-017-9364-2

Но даже если вы не спортсмен, есть хорошие новости. Исследование 2016 года показало, что биологическая обратная связь может быть эффективным средством лечения головных болей, которые 90 процентов людей получают не реже одного раза в год. Sesic A, et al. (2016). Тренировка с биологической обратной связью и головная боль напряжения. https://www.ncbi.nlm.nih.gov/pubmed/27333731

Хиропрактика широко признана в медицинском сообществе и поэтому квалифицируется скорее как «дополнительное» лекарство, чем как альтернатива. Практика сосредотачивается на опорно-двигательного аппарата и нервной системы, лечения проблем в области спины, шеи, суставов, рук, ног и головы.

Самой распространенной процедурой, выполняемой мануальными терапевтами, является манипуляция с позвоночником, также известная как «регулировка», которая включает приложение контролируемой силы (обычно руками мануального терапевта) к суставам, которые стали гипомобильными.

Идея заключается в том, что движение суставов становится ограниченным, когда окружающие ткани травмируются либо во время одного упражнения, например, во время тренировки с отягощениями, либо в результате повторяющегося стресса, например, сидя с плохой осанкой в ​​течение длительного времени.

Регулировки хиропрактики предназначены для восстановления подвижности и расслабления мышц, позволяя тканям заживать, а боль исчезать. Исследования в целом подтверждают его эффективность, причем исследования показывают, что он может улучшить такие состояния, как боль в шее. Bryans R, et al.(2014). Основанные на фактах рекомендации по хиропрактике взрослых с болью в шее. DOI: 10.1016 / j.jmpt.2013.08.010 или боль в пояснице. Goertz CM, et al. (2018). Влияние обычной медицинской помощи плюс хиропрактики по сравнению с обычной медицинской помощью только на боль и инвалидность среди военнослужащих США с болью в пояснице: клиническое испытание сравнительной эффективности. DOI: 10.1001 / jamanetworkopen.2018.0105

Гомеопатия действует во многом так же, как вакцина: она основана на принципе лечения «подобное подобным», что означает, что можно использовать вещество, которое вызывает побочные реакции при приеме в больших дозах – в небольших количествах – для лечения тех же симптомов. Беллавите П. (2015). Гомеопатия и интегративная медицина: непредвзято. DOI: 10.1007 / s12682-014-0198-x

Это понятие иногда используется и в традиционной медицине. Например, риталин – это стимулятор, используемый для лечения пациентов с СДВГ.

Гомеопаты собирают обширную справочную информацию о пациентах перед тем, как прописать сильно разбавленное вещество, обычно в жидкой или таблетированной форме, чтобы запустить естественные системы исцеления организма. Эти методы лечения называются «лекарствами».

Есть некоторые клинические доказательства того, что гомеопатия более эффективна, чем плацебо, в отношении некоторых вещей, таких как беспокойство у мышей. Однако в том же году другое исследование на людях показало, что он не эффективен при лечении тревоги. Битва продолжается. Лакшимпатия PR и соавт. (2012). Анксиолитический эффект гомеопатического препарата Pulsatilla nigricans у швейцарских мышей-альбиносов. DOI: 10.1016 / j.homp.2012.05.003 Paris A, et al. (2012). Влияние гелземия 5CH и 15CH на тревожное ожидание: одноцентровое рандомизированное плацебо-контролируемое исследование фазы III.DOI: 10.1111 / j.1472-8206.2011.00993.x

Некоторые средства (например, арника от синяков) перспективны. Но так как средства защиты индивидуальны для ea

Альтернатив

Альтернативы последняя версия 0.2.0-rc2

Что это?

Лучшее описание, которое вы можете найти, находится на странице руководства Debian update-alternatives package:
“Это возможно для нескольких программ, выполняющих одинаковые или похожие функции для одновременной установки в одной системе. Например, многие в системах установлено сразу несколько текстовых редакторов.Это дает выбор пользователям системы, позволяя каждому использовать разные редактор, если это необходимо, но мешает программе сделать хороший выбор редактора для вызова, если пользователь не указал конкретный
предпочтение.

Система альтернатив направлена ​​на решение этой проблемы. Общее название в файловая система используется всеми файлами, обеспечивая взаимозаменяемые функциональность.
Альтернативная система и системный администратор вместе определить, на какой именно файл ссылается это общее имя.
Например, если текстовые редакторы (1) и nvi (1) установлены в системе система альтернатив вызовет родовое имя / usr / bin / editor для ссылки По умолчанию / usr / bin / nvi. Системный администратор может переопределить this и заставит вместо этого ссылаться на / usr / bin / ed, а Система альтернатив не изменит этот параметр до тех пор, пока явно просил сделать это.

Часто бывает полезно синхронизировать несколько альтернатив, поэтому что они меняются как группа; например, когда несколько версии редактора vi (1)
установлены, справочная страница указана в / usr / share / man / man1 / vi.Я должен соответствуют исполняемому файлу, на который ссылается / usr / bin / vi. альтернативы обновления обрабатывает это посредством главных и подчиненных ссылок; когда хозяин изменены, любые связанные подчиненные устройства тоже изменятся. Главная ссылка и ее связанные ведомые устройства составляют группу связи.
Каждая группа ссылок в любой момент времени находится в одном из двух режимов: автоматический или руководство. Когда группа находится в автоматическом режиме, система альтернатив автоматически решит, когда пакеты устанавливаются и удаляются, нужно ли и как обновлять ссылки.В ручном режиме альтернативы система не будет менять ссылки; это оставит все решения на системный администратор.

Какие есть альтернативы ALT Linux?

Реализация оригинальных альтернатив Debian имеет некоторые ограничения и проблемы, поэтому мы (ALT Linux Team) переписываем эту подсистему. Что меняется мы сделали?
  • Не нужно отдавать специальное родовое имя для файла альтернативных вариантов. Это имя создается автоматически в настоящее время.
  • Эта версия написана на shell, awk и sed, поэтому мы сокращаем количество зависимостей, следовательно, количество пакетов в базовой системе.
  • Мы используем другую модель обновления. Оригинальная система альтернатив поддерживает собственную базу данных, создавая / удаляя файлы в система. В наших альтернативных (rpm) пакетах есть его конфиги и помещает их в общий каталог во время упаковки установка. После удаления пакета его конфигурация автоматически удалено. Он работает как подсистема меню Debian и более стабилен.
  • Теперь у нас нет ограничений по глубине иерархии master-slave.
  • Новая система альтернатив работает не с группами, а с каждым элементом.Вы можете перевести в ручной режим любой доступный элемент. Есть только одно различие между ведущим и ведомым: алгоритм расчета веса. Подчиненная альтернатива имеет тот же вес, что и главная.
  • альтернативный сценарий обновления исправляет неверное руководство альтернативы, переключив их в автоматический режим. В оригинале Альтернативой были ситуации с неработающими символическими ссылками. Также новая система не создает символические ссылки, если целевой файл не существует. Как В результате мы также уменьшаем количество битых символических ссылок.

Альтернативы архитектуры

общий двигатель:
  • альтернативы-авто – переключить в автоматический режим некоторые альтернативы пункт
  • альтернативы-руководство – переключить в ручной режим некоторые альтернативы поз.
  • альтернативы-обновление – обновить текущее состояние альтернатив символические ссылки
специальных скриптов для пакетов:
  • альтернативы-установить – зарегистрируйте новую конфигурацию альтернатив для использования в сценарии пакета% post
  • альтернативы-удалить – отменить регистрацию некоторых альтернативных конфигураций для использования в сценарии пакета% preun
ALT для Linux:
  • альтернативы-помощник – вспомогательный сценарий для использования в сценариях пакета
  • альтернативы-апгрейд – инструмент для обновления старого формата конфигурации (на основе XML) на новый.
каталогов:
  • / usr / bin – все скрипты живи здесь
  • /etc/alternatives/packages.d – все конфиги пакетов
  • / и т. Д. / Альтернативы / авто – символические ссылки на зарегистрированные конфиги
  • / и т. Д. / Альтернативы / руководство – список альтернатив в ручном режиме
  • / и т.д. / альтернативы / ссылки – только для внутреннего использования, альтернативные символические ссылки живут здесь
  • / usr / share / alternatives – каталог с некоторыми вспомогательными функциями и скриптами

Формат файла конфигурации

Форматировать очень просто.Есть три поля, разделенных табуляцией.
<общий name> <имя кандидата> <вес или имя мастера>
Пример конфигурации для главной альтернативы / usr / bin / links с альтернативными рабами /usr/share/man/man1/links.1.gz

/ usr / bin / links / usr / bin / links1 10
/usr/share/man/man1/links.1.gz /usr/share/man/man1/links1.1.gz / usr / bin / links1

Пример пакета rpm с поддержкой альтернатив

Это вариант пакета с альтернативным / usr / bin / вариантом.Все Макросы rpm, которые я использую в этой спецификации, вы можете найти в alternatives.spec.

——– variant.spec ——-
Название: variant1
Версия: 1.0
Выпуск: alt1

Резюме: альтернативный тестовый файл
Лицензия: GPL
Группа: System / Base
BuildArch : noarch

PreReq: альтернативы

% описание
альтернативы тестовый файл # 1

% install
install -d $ RPM_BUILD_ROOT /% _ bindir

cat> $ RPM_BUILD_ROOT /% _ bindir /% name << EOF
#! / Bin / sh
echo “вариант 1”
EOF
chmod 755 $ RPM_BUILD_ROOT /% _ bindir /% name

установить -d $ RPM_BUILD_ROOT /% _ altdir

cat > $ RPM_BUILD_ROOT /% _ altdir /% name << EOF
% _bindir / option % _bindir /% name 10
EOF

% post
% register_alternatives% name

% preun
% unregister_alternatives% name

% files
% _bindir / *
% _altdir / *
——— ——————

Строительство и установка

Для сборки этого пакета вам понадобится только дополнительная утилита help2man для создания руководства страницы для утилит.Просто запустите “make install”, чтобы установить альтернативы ваша система.

система альтернатив написана Станислав Иевлев

Хостинг

Член

Тег NOBR Альтернативный / аналог CSS

Бесплатные, проверенные и готовые к использованию примеры!

абстрактный

Иногда необходимо поставить ряд неразрывных пробелов между словами, чтобы браузер не разрывал строку.Использование нескольких & nbsp; (неразрывный пробел) довольно беспорядочный, и из старых версий HTML не определен в стандарте XHTML. В этой статье рассказывается о свойстве CSS, которое может заменять тег .

совместимый

  • CSS 2 и выше
  • Используйте свойство CSS “white-space: nowrap” для элемента, который должен содержать неразрывный текст.

    Вы можете добавить класс стиля, например .nobr, и использовать его позже вместо тега :

    исходный код: CSS

    .nobr {белое пространство: nowrap}
    

    Пример:

    исходный код: XHTML / CSS

    
    
    
     Пустой XHTML 1.0 Строгий документ 
    
    
    
    
    

    Тестовая таблица №1 (перенос слов):

    <таблица>
    Популярные ключевые слова: бесплатный хостинг CSS HTML руководство учебная информация по веб-дизайну |

    Тестовая таблица №2 (класс nobr CSS):

    <таблица>
    Популярные ключевые слова: бесплатный хостинг CSS HTML руководство по учебной информации по веб-дизайну
    |
    протестировано

  • W3.
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

    Вернуться наверх