Что такое альтернативная энергия: Альтернативные источники энергии

Содержание

Альтернативные источники энергии

В современном мире, с растущими показателями потребления и как следствие - ограниченными энергоресурсами, стремительные обороты набирает развитие технологий добычи энергии из альтернативных, возобновляемых источников. К таким источникам относятся, в первую очередь, солнечная и ветровая энергии, геотеримальное тепло, энергия морских волн и приливов.

Сегодня альтернативные источники энергии уже широко используются для решения проблем энергоснабжения не только в промышленных масштабах, но и в частном секторе.  Доступность технологий получения энергии из неисчерпаемых источников позволяет строить энергонезависимые дома с экологически чистой инфраструктурой в удаленных районах и решать проблемы энергоснабжения уже существующих объектов. 

Виды альтернативных источников энергии

Такие альтернативные источники энергии, как энергия солнечного света и ветра используются для энергоснабжения и нагрева воды, геотермальное тепло земли - для отопления и кондиционирования зданий. Преобразование солнечной энергии в электрическую происходит при помощи фотоэлектрических пластин из кремния - самого распространенного элемента на планете.
Солнечные батареи
, на основе кремниевых пластин имеют продолжительный ресурс жизни - более 25 лет и, в зависимости от технологии производства, сохраняют до 80% своей эффективности в течении всего ресурса. Количество энергии, получаемой от солнечных батарей, различается и напрямую зависит от месторасположения и солнечной активности в различные сезоны года. Эффективность преобразования энергии у солнечных батарей достигает 20% и зависит от технологии их производства и чистоты кремния. Технология стремительно развивается и показатель эффективности постоянно растет.

Эксплуатация ветро-установок (ветрогенераторов) для получения электричества, целесообразна в районах с высоким значением средней скорости ветра или в периоды низкой солнечной активности. Эффективность преобразования энергии ветра не уступает эффективности гелиоустановок, но зависит от точки расположения объекта и корректно рассчитанного потенциала местности.

Широко используется для отопления зданий и геотермальное тепло земли. Тепловые насосы позволяют получать тепло окружающей среды: земли, воды или воздуха. В зимний период геотермальное тепло используется для отопления зданий, а в летние месяцы позволяет эффективно отводить тепло, производя кондиционирование.

Альтернативные источники энергии и выгоды их использования

Эффективность использования тех или иных альтернативных источников энергии напрямую зависит от региона, в котором необходима установка. Качественный мониторинг энергопотенциала позволяет определять наиболее подходящую технологию и рассчитывать ее окупаемость на годы вперед, а так же исключает ошибки связанные с региональными особенностями.

Конечно, первоначальную цену энергонезависимого дома, с экологически чистыми, возобновляемыми источниками энергоснабжения, сегодня нельзя назвать низкой, но по истечении двух - пяти лет эксплуатации альтернативные источники энергии полностью окупают свою стоимость и приносят ощутимую финансовую выгоду в течении многих лет.  Не стоит забывать о экологичности альтернативных технологий добычи энергии. Солнечные, ветровые и гелиоустановки не производят вредных выбросов в атмосферу, не загрязняют воду и безопасны для человека.

 

Производство солнечных батарей набирает обороты

Нехватка ресурсов в удаленных регионах, в совокупности с быстрыми темпами развития технологии привело к ситуации, когда производство солнечных батарей быстро набирает обороты, а стоимость конечных изделий с каждым годом становится все более доступной для потребителей со средним уровнем доходов. И если вчера технология гелиоустановок была доступна лишь для космических программ, то уже сегодня мини-солнечные электростанции, как грибы после дождя, растут на крышах домов и садовых участках.

 

     

виды, значение, преимущества и недостатки — Природа Мира

Альтернативные, или нетрадиционные источники энергии - это ресурсы природы, которые можно использовать для получения электричества. Сюда относятся солнце, ветер, и даже энергия земли, биомасс, сточных вод и отходов. По прогнозам, с помощью биогенного горючего можно получать до 49% электроэнергии, а также 16-22% - от энергии ветра и воды.

Читайте также: Возобновляемые источники энергии

Виды, преимущества и недостатки разных альтернативных источников энергии

У каждого типа нетрадиционной энергетики есть свои плюсы и минусы, а также особенности организации процесса для получения электричества.

Солнечная энергия

Преобразование энергии солнца происходит с помощью особых технологий. Сложность обработки солнечной энергии выступает в качестве недостатка этого источника:

  • излучение имеет низкую плотность и непостоянно, поэтому существующие технологии имеют ряд ограничений;
  • в некоторых странах из-за низкого уровня солнечного излучения реализовать методику нецелесообразно.

Среди преимуществ можно выделить абсолютную экологическую безопасность солнечной энергии и отсутствие вмешательства в геологию Земли.

На солнечной энергии работают космические станции и спутники. Широкое распространение получили солнечные панели в некоторых странах – ими оснащают крыши домов.

Геотермальная энергетика

Геотермальный метод получения энергии построен на принципе преобразования тепла мантии и ядра Земли (чаще всего источником служат пароводяные резервы). Преобразование природного пара – процесс трудоемкий, так как требуется строительство труб и турбин, проводящих его с глубины от 2-3 км. Однако стоимость электроэнергии на выходе получается не слишком высокой.

Недостаток метода – вероятность оседания грунта и повышения сейсмической активности, поэтому в опасных районах этот источник альтернативной энергии неприменим.

Ветровая энергетика

Для реализации метода требуется ветряная электростанция. Одно из преимуществ такого источника энергии – это дешевое оснащение. Но недостаток – сильная зависимость от погодных условий, требуется постоянный контроль состояния. А еще ветровые электростанции могут создавать помехи для радиоволн.

Важно! Обширное использование ветряных электростанций может стать причиной недостаточной вентиляции промышленных районов, что приведет к ухудшению экологической обстановки.

Также для ветряных станций требуются большие площади, поэтому реализация в густонаселенных регионах затруднена. Однако ветряные источники энергии используются в некоторых странах Европы и Америки для снабжения небольших поселений.

Волновая энергетика

В этом способе для получения электричества используется энергия волн. В отличие от альтернативных источников, описанных выше, волновая энергия отличается большей ударной мощностью. Это самый многообещающий способ получения энергии в перспективе освоения океанов.

Важно! Все виды естественной энергии – ветер, солнце, волны – относятся к возобновляемым источникам.

Самый яркий пример традиционного использования волновой энергии – гидроэлектростанции, но он не единственный. Целесообразно строительство волновых станций в районах с мощными приливами (колебание больше 4 м).

Среди недостатков можно выделить небольшую мощность, строительство только возле побережья, а также цикличность работы – всего 2 раза в сутки. Экологическая безопасность такого способа получения энергии под вопросом, ведь станции нарушают баланс соленой и пресной воды, что несет угрозу морской жизни.

Новейшая технология получения энергии волновым путем – аэро ГЭС. Они работают по принципу конденсации влаги из атмосферы, однако до внедрения этой технологии в жизнь еще далеко.

Градиент-температурная энергетика

В основе этого метода лежит баланс температур. Для строительства станций требуется морское побережье. Поглощая до 70% солнечной энергии, мировой океан становится отличным источником температурных ресурсов. Однако нагрев и выделение углекислой кислоты при обработке морской воды нарушают экологическую обстановку. Среди преимуществ можно выделить только то, что ресурс крайне обширен.

Биомассовая энергетика

Под этим понятием скрывается процесс гниения биологических отходов и ресурсов – в результате выделяется биологический газ с большим содержанием метана. Его можно использовать для обогрева помещений и выработки электричества.

Больше всего такой источник энергии используется в сельскохозяйственных предприятиях. Это безотходное производство, так как гниющие продукты потом используются для удобрения. Кроме растений и навоза, можно использовать быстрорастущие водоросли.

Главный недостаток теплового источника – КПД не превышает 6% и для обеспечения нужд мегаполиса энергией такой метод не подойдет.

Энергия молнии

Один из самых новых альтернативных методов получения электричества – сбор энергии молний, попадающих в землю. Пока что проект находится на стадии разработки – установки для улавливания молнии еще не готовы.

Это дорогостоящий, но окупающийся метод, ведь 1 молния способна обеспечить целый район крупного города энергией на некоторое время. Но уже сейчас можно выделить главный недостаток – зависимость от частоты гроз.

Роль и значение альтернативной энергетики

Поиск альтернативных источников энергии – одна из самых актуальных задач, так как человечество чудовищными темпами поглощает газ, нефть и другие виды топлива, чтобы производить энергию. Научная «мечта» - получение альтернативы электричеству, но она пока что недостижима. Кризис топливных ресурсов неизбежен, и нетрадиционные источники энергии должны помочь предотвратить его.

Альтернативные источники энергии в России

В России в разных регионах интегрируется практическое использования следующих альтернативных источников энергии:

  • Солнечная энергия. Самая большая трудность – это законодательное и финансовое обеспечение станций, собирающих солнечную энергию. Наибольший потенциал такого способа получения энергии сосредоточен в южных регионах, а также на севере – в Якутии и Магаданской области.
  • Гидроэнергетика. ГЭС после АЭС занимают 2 место по способам производства электроэнергии, и перспективы у этого метода достаточно большие.
  • Геотермальная энергетика. Геотермальные ресурсы России в 10 раз богаче, чем залежи нереализованного угля. Самый перспективный край – Камчатка, где на глубине чуть больше 3 км заложен пар температурой 200 градусов. Большим потенциалом также обладает Кавказ и Краснодарский край.
  • Биогаз. Активно развивающаяся отрасль энергетики, востребованная в России. Есть даже предприятия, которые начали производство установок.
  • Приливная энергетика. Наиболее перспективны города, расположенные на побережье.
  • Ветроэнергетика. На территории России ветрогенные установки используются со времен СССР: на территории Калининграда, в заполярье, Башкортостане и Чувашии. Потенциал у этого метода в РФ обширен, поэтому ветроэнергетика активно развивается.

Альтернативные источники энергии – один из вопросов сохранения окружающей среды и ресурсов планеты, который изучается тысячами специалистов. Каждый день ищутся новые решения и разрабатываются методы для получения энергии из ветра, солнца, воды. Но сфера изучена недостаточно и многие задачи только предстоит решить.

Не нашли, то что искали? Используйте форму поиска по сайту

Понравилась статья? Оставь комментарий и поделись с друзьями

Альтернативная энергетика для дома своими руками: обзор лучших разработок

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии – в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

Содержание статьи:

Популярные источники возобновляемой энергии

“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница – предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Фото из

Расположение солнечной панели на скатной крыше

Монтаж солнечных батарей на пологую крышу

Конструкция для изменения угла наклона приборов

Формирование угла наклона солнечной батареи

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств.  Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью  3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 – сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло
  • ДВП

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 – соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 – сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Фото из

Тепловой насос с забором тепла земли или подземной воды

Внешний блок теплового насоса воздух-вода или воздух-воздух

Взаимосвязь внешней и внутренней составляющих эко-систем

Оборудование внутреннего блока теплового насоса

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы теплового насоса

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса  может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 – подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 – изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 – обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений

Фото из

Шаг 1: Подбор деталей для изготовления ветрогенератора

Шаг 2: Извлечение двигателя и патрона из ненужной дрели

Шаг 3: Детали для устройства крепежного узла ветрогенератора

Шаг 4: Установка крепежного узла в собранном виде

Шаг 5: Установка подшипника с внутренней стороны пластины

Шаг 6: Сборка ветрогенератора и установка на площадкуСборка ветрогенератора и установка на площадку

Шаг 7: Крепление лопастей ветрогенератора к пластине

Шаг 8: Небольшой самодельный ветрогенераторНебольшой самодельный ветрогенератор

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть и горизонтальные. Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы. Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими. Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги. При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти, вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор, который вырабатывает переменный ток;
  • Контроллер управления лопастями, отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи, нужны для накопления и выравнивания электрической энергии;
  • Инвертор, выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта, необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 – изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 – изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 – переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Выводы и полезное видео по теме

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Ваш дом использует альтернативную энергетику в качестве источников тепла и электроэнергии? Вы самостоятельно собрали ветрогенератор или изготовили солнечные батареи? Поделитесь, пожалуйста, своим опытом в комментариях к нашей статье.

Альтернатива в розетке / Статьи и обзоры / Элек.ру

В СМИ чуть ли не каждый день мелькают новости про гигантские поля солнечных элементов и фотографии ветряков на фоне заката. Сегодня модно говорить про альтернативную энергетику, имея ввиду устройства, добывающие электроэнергию из явлений природы — солнечные электростанции, ветряные мельницы, электростанции, работающие на биотопливе, и так далее.

Я не придерживаюсь оптимистичного взгляда на эти вещи, и предлагаю взглянуть на понятие «альтернативные источники энергии» с другой точки зрения. С точки зрения потребителя, которому нужно позаботиться об энергобезопасности своего жилища.

Традиционные источники электроэнергии

Для обывателя традиционная энергия — это электроэнергия, которая приходит к нам в жилище по проводам. Более 60 % традиционной энергии — тепловая генерация, которая происходит за счет сжигания газа и угля. Остальную долю вырабатывают атомные и гидроэлектростанции.

Плюсы этих источников — производство энергии давно отлажено, генерация стабильна и легко регулируется, тепловые и атомные станции можно располагать почти в любой точке планеты. Было бы топливо.

А вот как раз топливо — основной минус традиционных источников. Нефти и газа осталось на несколько десятков лет, атомное «топливо» опасно, его сложно получать и утилизировать, реки иссякают. Другой минус — большое отрицательное влияние на природу.

И вот, казалось бы, найден выход.

Альтернативные источники электроэнергии

Главное отличие альтернативной энергетики от традиционной — она использует возобновляемые, «бесконечные» источники энергии, при этом причиняя минимальный вред окружающей среде.

Вроде бы выход найден, и можно отказаться от генерации прошлого тысячелетия, зажигая наши лампочки не от грязного угля, а от чистого солнца?

Однако доля выработки «альтернативной» электроэнергии в большинстве стран едва превышает 1 %, поскольку эта энергия имеет свои минусы:

  • Стоимость солнечной энергии примерно в 3 раза выше, чем традиционной электроэнергии. И цена сильно зависит от региона генерации. Кроме того, как нам известно, ночью солнца нет, и «кина не будет», если не предусмотреть накопление электроэнергии.
  • Ветряные генераторы вроде бы тоже позволяют получать энергию «на халяву», но и они имеют свои минусы, главный из которых — большая зависимость от интенсивности ветра. Нет движения воздушных масс — и мы сидим в темноте, без «ВК» и «Инстаграма».
  • Биоэнергетика и другие способы альтернативной генерации особого распространения пока не получили из-за неотработанной технологии.

Кроме того, все эти способы имеют главные общие минусы — большие капиталовложения, низкая мощность генерации, большое время окупаемости, критичность в выборе места установки. А главное — солнце и ветер зависят только от «небесной канцелярии», и можно долго ждать у моря погоды, сидя на нуле.

В некоторых странах доля «зеленой энергии» высока. Например, в ряде провинций Китая более 80 % электроэнергии генерируется солнцем. А Дания и Исландия больше половины необходимой энергии получают «из воздуха»

Получается, что, несмотря на оптимистичные новости, мир не готов к отказу от угля и газа. Теплогенерация работает давно и стабильно, мощности огромные, стоимость электроэнергии небольшая. В принципе все всех устраивает.

Тут можно подлить немного конспирологии в статью. Понятно, что традиционные источники энергии — это огромные деньги. По разным оценкам, бюджет России более чем на 40 % пополняется от продажи нефти и газа за границу. Как думаете, компании, получающие миллиарды долларов прибыли, заинтересованы в развитии ветряных или солнечных электростанций?

Кстати, есть версия, что Никола Тесла изобрел способ передачи электроэнергии без проводов. Но производители меди были категорически против…

Хотя, стоит сказать о том, что есть страны, в которых доля «чистой» электроэнергии перевалила за 50 %. Россия в их число не входит.

Альтернативные источники в России

Понятно, что пока в России традиционные источники сравнительно доступны, а капиталовложения в новые технологии минимальны, ждать альтернативы можно долго. Кроме того, районов со стабильно высокой солнечной и ветряной активностью у нас в стране крайне мало. Поэтому предлагаю применительно к России изменить терминологию и взгляды на вещи.

Считаю, что альтернативная электроэнергия — это энергия, поступающая не от централизованного электроснабжения, а от иных источников. Как правило, в России эти источники индивидуальные, имеющие небольшую мощность. Они являются, прежде всего, аварийными, помогающими пережить black out, когда из районной подстанции пошел дым или злобные терминаторы захватили контроль над сетью «Скайнет».

Реальная альтернатива

В нашей стране в подавляющем большинстве случаев в качестве источников альтернативной электроэнергии используются не солнечные батареи и не ветряки, а топливные генераторы. Для бытовых целей применяют генераторы небольшой мощности (порядка 5–10 кВт), работающие на жидком топливе (бензин, дизельное топливо).

Если нужно трехфазное напряжение и мощности более 10 кВт, в качестве топлива используют дизельное топливо и природный газ.

Генераторы могут иметь мощность до 2000 кВт, что позволяет питать от них среднее промышленное предприятие или небольшой поселок с населением около 1000 человек. Впрочем, такие мощности уже трудно назвать альтернативными, поскольку они используются в основном там, где отсутствует возможность подключения к обычным электросетям.

Отличия генераторов по виду топлива

Топливные генераторы сейчас есть в каждом хозяйстве среднего достатка. Большой плюс генераторов — они не зависят ни от кого. Главное — иметь достаточный запас горючего, и можно быть спокойным.

Перечислю кратко основные преимущества генераторов с разным видом топлива:

  • Бензиновые: низкая цена, низкий уровень шума, небольшие габариты и масса, легкий запуск при низких температурах.
  • Дизельный: высокая мощность, возможность продолжительной работы, большой ресурс работы, низкая стоимость электроэнергии.
  • Газовый: экономичность, чистота выхлопа, низкий шум при высокой мощности, простота обслуживания.

Описание однофазного генератора Huter

Вот вкратце параметры этого бензинового электрогенератора, которые интересуют нас с электрической стороны: выходная мощность — 2500 ВА (с учетом коэффициента мощности и запаса — берем 2 кВт), запуск — ручной.

Бензиновый генератор Huter DY3000L

В быту в качестве альтернативы при аварийных случаях лучшее решение — бензиновые генераторы. А с точки зрения уровня шума и габаритов лучшими являются инверторные бензиновые генераторы.

В реальном случае установки основные потребители питания — система отопления (около 300 Вт, зимой — самый стратегически важный потребитель, ради него обычно покупается генератор), телевизор, интернет и другая слаботочка (100 Вт), холодильник (300 Вт), освещение (300 Вт). Итого — прекрасно укладываемся в 1,5 кВт. Чтобы питать такую нагрузку, данного генератора вполне хватает.

Самая важная и капризная часть бензинового генератора Huter, как и любого другого, — это система его запуска. Топливный кран, воздушная заслонка, свеча, уровень масла и бензина — все должно быть в нужном положении и в норме. Кстати, это основной минус таких генераторов — для его стабильной работы нужно его регулярно обслуживать и проводить пробные пуски.

Электрическая схема однофазного бензогенератора Huter

Как устроен бензиновый генератор?

Основа генератора — двигатель внутреннего сгорания, который преобразует энергию сгорания бензина во вращательное движение. Вращение передается на электрический генератор, который и вырабатывает напряжение. Величина напряжения и его частота стабилизируются при помощи феррорезонансной системы обратной связи. Кому интересно, вот электрическая схема этого генератора (см. рис. выше).

Запускается генератор при помощи ручного стартера, но перед пуском нужно открыть топливный кран и воздушную заслонку.

Ручной стартер

Существуют генераторы с электрическим стартером, где не нужно ничего дергать, а просто нажать на кнопку «Старт». Наиболее продвинутые модели генераторов имеют систему автоматического запуска и выбора резерва (АВР).

Варианты подключения генератора к домашней электросети

Честно говоря, такие генераторы предназначены только для автономного электроснабжения переносных электроприемников. То есть для квартир и домов такие генераторы не годятся. Почему? Ведь по мощности все нормально! Дело в том, что такие переносные генераторы имеют на выходе одну или две розетки для непосредственного подключения потребителей вроде светильников или сварочных аппаратов. И если не знать всех тонкостей, подключение к дому может привести к смертельной опасности.

Ужасно, что некоторые продавцы предлагают для подключения генератора к дому изготовить переходник типа «вилка-вилка», от одного вида которого у меня встают волосы дыбом, ведь я прекрасно знаю, что эта «переноска» смертельно опасна. Не делайте так!

Переходник типа «вилка-вилка»

Тем не менее после некоторой переделки такой генератор можно подключить через систему ручного или автоматического выбора резерва (АВР). Ручное переключение можно сделать на основе любого двухполюсного переключателя подходящего номинала. При пропадании глобального электропитания хозяин дома запускает генератор и одним движением руки переходит на локальный, альтернативный источник.

В случае трехфазного питания переключатель может иметь такой вид:

Автоматический выбор резерва не требует участия человека — переключение происходит посредством автоматики, которая обычно переключает источники питания при помощи контакторов.

Самый продвинутый вид системы АВР — использование рубильника с моторным приводом. Это самая дорогая, но самая надежная система.

АВР на контакторах

Выводы

На мой взгляд, говорить о массовом внедрении альтернативной энергетики в России преждевременно. На это есть несколько объективных причин — от финансово-политических до природно-географических.

И на сегодняшний момент ситуация такова, что оптимальный вариант для большинства случаев — это использование обычного, «грязного» питания плюс альтернативный источник (фактически — аварийный резерв) в виде топливного генератора.

Источник: Александр Ярошенко, автор блога SamElectric.ru. Опубликовано в журнале «Электротехнический рынок» №2 2020

Альтернативные источники энергии: виды и использование

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии.

Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты)

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

виды и преимущества, изготовление своими руками

Запасы углеводородов на нашей планете не бесконечны, поэтому стремительно набирает популярность альтернативная энергетика, работающая на возобновляемых источниках энергии. Дома оборудуются солнечными панелями и ветряками. Растёт доля выработанной солнечными и ветровыми электростанциями энергии. В 2010 году она была равна 5%. Это заставляет задуматься о постройке небольшой электростанции у себя дома.

Как выбрать источник энергии

Существует множество вариантов получения альтернативного электричества, популярных и не очень. Некоторые из них не подходят для наших широт, а некоторые представляют опасность.

Тепловой насос, перекачивающий тепло из почвы в дом по принципу холодильника, подойдёт лишь для жителей геотермальных районов. Попытка построить его у себя на участке обойдётся жителю Подмосковья в вымороженный на двухметровую глубину верхний слой почвы. От замерзания пострадает корневая система деревьев и кустарников, которые впоследствии заболеют или погибнут.

Биогаз подходит для добычи на крупных предприятиях, где не возникает проблем с топливом для биореакторов. В частном хозяйстве выгоды от биогаза мало, среднестатистическое подсобное хозяйство не сможет производить нужное количество топлива. Его придётся завозить, что приведёт к постоянным расходам на доставку. Не стоит забывать, что производство биогаза взрывоопасно и требует контроля за оборудованием, который в домашних условиях трудно осуществить.

Есть более подходящие альтернативные источники энергии для частного дома. К ним относятся:

  • Солнечная энергия.
  • Энергия ветра.
  • Энергия потока воды.
  • Древесный газ, получаемый при термическом разложении древесины без доступа воздуха.

В отличие от биогаза, они подходят для эксплуатации в частных домах и безопасны при правильном использовании.

Но не у всех на участке течёт ручей или имеется доступ к большим объёмам древесины, поэтому будет разумнее рассмотреть возобновляемые источники энергии, которые доступны везде. К ним относятся солнечный свет и ветер.

Для преобразования альтернативной энергии есть готовые решения своими руками. Они позволяют максимально эффективно превращать её в электричество и подходят для реализации в частном доме.

Электростанция на солнечных батареях

Резервные источники питания на основе солнечных батарей хорошо подойдут для тех мест, где имеются постоянные перебои с электроснабжением. Из-за высокой стоимости их использование нецелесообразно там, где нет проблем с электричеством. Установленная для экономии солнечная электростанция окупит себя лишь через 8−10 лет. За это время свинцовые аккумуляторы придут в негодность, и их замена повлечёт за собой дополнительные расходы. Средства, потраченные на замену аккумуляторов, увеличат стоимость электростанции и отодвинут сроки окупаемости ещё на 3−5 лет.

Необходимые компоненты и сборка

Солнечная панель собирается из фотоэлектрических элементов, которые различаются формой и размерами.

Солнечные элементы выращиваются из кремния и делятся на два вида: монокристаллические (mono-Si) и поликристаллические (poly-Si).

Монокристаллические элементы обладают 20% КПД и сроком службы до 30 лет. Для их нормальной работы нужен солнечный свет, попадающий на батареи под прямым углом. При рассеянном свете мощность таких элементов снижается в три раза и даже малейшее затенение одного элемента выводит из режима генерации всю цепочку.

Поэтому СЭС (солнечным электростанциям), построенным на mono-Si элементах, нужны системы, следящие за положением солнца и поворачивающие панели вслед за ним. Нельзя допускать загрязнения панелей, для этого они оборудуются автоматической системой очистки. На небольших СЭС солнечные батареи моются вручную.

Электростанции на mono-Si панелях подойдут для регионов с большим количеством солнечных дней в году. При пасмурной погоде их эффективность близка к нулю.

Поликристаллические элементы имеют свои преимущества и недостатки. К преимуществам можно отнести небольшую стоимость и эффективную работу при рассеянном свете.

Недостатков у них больше:

  • Более низкий КПД — 12%.
  • Меньший срок службы — до 25 лет.
  • Усиленная деградация при температурах выше 55 °C.

Солнечные poly-Si батареи устанавливаются в местности с преобладанием пасмурных дней. Способность преобразовывать рассеянный свет позволяет монтировать их без систем автоповорота. Кроме того, их не нужно часто мыть. Из-за своей дешевизны и неприхотливости поликристаллические фотоэлементы широко применяются в самодельных СЭС.

Сборку собственной солнечной электростанции лучше начать с подбора компонентов. От них будет напрямую зависеть её мощность. Для изготовления классической СЭС понадобятся:

  1. Фотоэлектрические элементы.
  2. Шина для соединения элементов.
  3. Лист стекла или прозрачного пластика.
  4. Алюминиевый профиль.
  5. Эпоксидная смола с отвердителем.
  6. Провода сечением 4 мм².
  7. Настенный щиток.
  8. Контроллер солнечной батареи.
  9. Инвертор 12−220 В.
  10. Предохранители.
  11. Клеммники для предохранителей.
  12. Диоды Шоттки.
  13. Свинцово-кислотный аккумулятор ёмкостью не менее 150 Ач.
  14. Клеммы для аккумулятора.

Схема подключения компонентов СЭС:

Начинать нужно со сборки солнечной панели. Отрежьте от шины кусочки по 7 см длиной и припаяйте их к минусовым контактам фотоэлемента, расположенным на лицевой стороне. Повторите это действие с каждым фотоэлементом.

Полученные «полуфабрикаты» нужно соединить последовательно, припаивая минусовой вывод одного элемента к плюсовому следующего. Количество фотоэлементов в цепи (модуле) должно быть таким, чтобы на её выводах возникало напряжение 14,5 В. При использовании полувольтовых элементов, их понадобится 29 штук. Чтобы при затемнении одного элемента в цепи не возникал обратный ток, нужно в разрыв минусовой шины каждого фотоэлемента впаять по диоду Шоттки.

Из одного модуля можно сделать солнечную батарею, но её мощность будет минимальной. Поэтому солнечные панели собираются из нескольких параллельно подключённых модулей.

Обезжирьте стекло и аккуратно приклейте к нему собранные модули. В качестве клея используйте эпоксидную смолу, она при застывании не мутнеет и не препятствует попаданию света на фотоэлементы. Не используйте другие клеи, даже если они кажутся хорошими.

После схватывания эпоксидки установите стекло в раму из алюминиевого профиля, заранее просверлив в ней отверстие для проводов. Припаяйте выводы модулей к проводам и просуньте их наружу. Для герметичности залейте всю конструкцию эпоксидкой.

Застывшая эпоксидная смола приклеит стекло к раме и защитит фотоэлементы от влаги и пыли.

Особенности установки на доме

Собранную солнечную панель можно установить на крыше, но лучшим вариантом будет её установка на южную стену дома. Установленная на ней панель будет находиться под солнечными лучами почти весь световой день.

Повесьте щиток на стену и закрепите в щитке контроллер, инвертор и клеммники со вставленными в них предохранителями. Заведите в щиток провода и подключите их согласно схеме. Помните, что при зарядке из аккумулятора выделяются ядовитые газы, поэтому его нужно размещать в хорошо проветриваемом помещении.

При запитывании внутридомового освещения от инвертора часть энергии теряется при преобразовании. Чтобы не приходилось зря тратить запасы из автономного источника энергии, дома установите систему освещения, работающую от 12 вольт.

Солнечные коллекторы для нагрева

Говоря о СЭС, преобразующих свет в электричество, нельзя не упомянуть о другой разновидности солнечных панелей.

Солнечные коллекторы применяются в системах отопления и горячего водоснабжения и бывают:

  • Воздушные.
  • Трубчатые.
  • Вакуумные.
  • Плоские.

Внутри воздушных коллекторов находятся покрытые светопоглощающим составом пластины. Они нагреваются солнцем и отдают тепло циркулирующему по коллектору воздуху, которым отапливают жилище.

Для увеличения площади рабочей поверхности в воздушных коллекторах используют гофрированные пластины.

В корпусе трубчатых коллекторов расположены стеклянные трубки, окрашенные изнутри чёрной краской. Солнечный свет, попадая на краску, нагревает её. Затем тепло передаётся бегущей по трубкам воде.

Вакуумные коллекторы представляют собой разновидность трубчатых. В ней окрашенные трубки вставлены в прозрачные, обладающие большим диаметром. Между ними находится вакуум, уменьшающий потери тепла из внутренней трубки.

Самыми простыми и дешёвыми из всех являются плоские коллекторы. Они состоят из пластины, под которой находятся трубки с циркулирующей водой, закрытые снизу слоем теплоизоляционного материала. КПД у плоских коллекторов — самый низкий.

Схема подключения к системе водоснабжения:

Воздух из коллектора поступает в дом напрямую, а вода сначала поступает в бойлеры, где подогревается ТЭНами до нужной температуры. Из бойлера горячая вода подаётся на кухню и в ванную, также она используется для отопления.

Как сделать ветрогенератор

Солнечные электростанции не работают ночью и в пасмурную погоду, а электричество требуется всегда. Поэтому, проектируя альтернативную энергетику для дома своими руками, нужно предусмотреть в ней генератор, не зависящий от солнца.

Для использования в качестве второго источника энергии отлично подойдёт ветрогенератор. Его можно собрать даже из б/у запчастей, что существенно сэкономит ваши средства.

Список того, что понадобится для сборки ветряка:

  1. Генератор с магнитным возбуждением от грузовика или трактора.
  2. Труба с наружным диаметром 60 мм и длиной 7 метров.
  3. Полтора метра трубы с внутренним диаметром 60 мм.
  4. Стальной трос.
  5. Скобы и колышки для крепления троса.
  6. Провода, сечением 4 мм².
  7. Повышающий редуктор 1 к 50.
  8. ПВХ труба, диаметром 200 мм.
  9. Диск от циркулярной пилы.
  10. Два разъёма EC-5.
  11. Кусок стального листа, толщиной 1 мм.
  12. Лист алюминия, толщиной 0,5 мм.
  13. Подшипник под внутренний диаметр мачты.
  14. Муфта для соединения валов генератора и редуктора.
  15. Труба под внутренний диаметр подшипника, длина — 60 см.

Все эти материалы продаются в строительном и в автомагазине. Новые редукторы с генератором стоят дорого, поэтому их лучше купить на барахолке.

Изготовление ветроколеса для дома

Главным элементом любого ветряка являются лопасти, поэтому их нужно изготовить первыми.

Чтобы определиться с размерами, используйте таблицу.

Ветроколесо по мощности в идеале должно совпадать с генератором, но из-за чрезмерно больших размеров получающегося колеса это не всегда возможно. Поэтому чаще всего мощность лопастей значительно ниже таковой у генератора. В этом нет ничего страшного.

Разрежьте ПВХ трубу на отрезки, равные длине лопастей. Распилите их пополам по продольной оси. Перерисуйте на половинки трубы разметку и по ней вырежьте лопасти. Отпилите от заготовок треугольники. Из стального листа вырежьте крепления для лопастей и просверлите в них дырки. Возьмите диск от циркулярной пилы, насверлите в нём отверстий и болтами прикрутите лопасти к диску.

Сборка, установка и подключение

Выройте яму и забетонируйте в ней трубу с внутренним диаметром 60 мм. Возьмите семиметровую трубу и, отступив 1 метр от края, установите на неё скобы. Вварите в тот же край трубы подшипник, используя аргонную сварку.

Согните из стального листа раму и снизу приварите к ней трубу, которая влезает в подшипник. Закрепите на раме редуктор с генератором, соединив их валы. Установите снизу рамы и на верхушке мачты 2 ограничителя в виде штырей. Они не дадут раме поворачиваться больше, чем на 360 градусов. Сделайте флюгер из алюминиевого листа и закрепите его на задней части рамы. В основании мачты просверлите отверстие для провода.

Подключите к генератору провод и протяните его сквозь раму и мачту. Оденьте на вал редуктора ветроколесо и закрепите его на нём. Вставьте раму в подшипник и покрутите её. Она должна легко вращаться.

Ветряк в сборе выглядит примерно так:

  1. Лопасти.
  2. Диск от циркулярки.
  3. Редуктор.
  4. Соединительная муфта.
  5. Генератор.
  6. Флюгер.
  7. Крепление флюгера.
  8. Подшипник.
  9. Ограничители.
  10. Мачта.
  11. Провод.

Вбейте в землю колышки так, чтобы расстояние от мачты до каждого из них было одинаковым. Привяжите тросы ко скобам на мачте. Для установки мачты нужно вызывать автокран. Не пытайтесь установить ветрогенератор самостоятельно! В лучшем случае вы разобьёте ветряк, в худшем — пострадаете сами. После поднятия мачты автокраном, направьте её основание в забетонированную ранее трубу и дождитесь, пока кран опустит её в трубу.

Трос нужно привязывать к колышку в натянутом состоянии. Причём все тросы должны быть привязаны так, чтобы мачта стояла строго вертикально, без перекосов.

Подключать ветрогенератор нужно к зарядному устройству через разъём ЕС-5. Сама зарядка устанавливается в щитке с оборудованием СЭС и подключается напрямую к аккумулятору.

Чтобы не лишиться бытовой техники, во время грозы всегда отключайте ветряк от зарядного устройства.

Сборка электростанции закончена. Теперь вы не останетесь без электричества, даже если вам отключат свет на длительное время. При этом не придётся тратить деньги на топливо для генератора и время на его доставку. Все будет работать автоматически и не потребует вашего вмешательства.

Альтернативные источники энергии - ветровые, солнечные, гидроэнергетические и другие альтернативные источники энергии для коммерческих и домашних источников энергии

Введение в Altenergy

10¹⁶ ватт - это примерно количество энергии, имеющееся в распоряжении цивилизации, которая может использовать все падающее на планету солнечное излучение от ее родительской звезды - Тип I по шкале Кардашева. Когда известный астрофизик Николай Кардашев впервые попытался измерить уровень технологического прогресса цивилизации в 1964 году, он остановился на потреблении энергии как на лучшей метрике для измерения прогресса в космическом масштабе.

Во многих отношениях энергия является валютой нашей Вселенной, от одноклеточных организмов, плавающих в первобытных бассейнах, до колоний сурикатов в африканской саванне и огромных мегаполисов, таких как Нью-Йорк, Сидней или Пекин. На заре первого тысячелетия нашей эры население мира составляло всего 150-200 миллионов человек, а к 1000 году нашей эры достигло 300 миллионов. К началу промышленной революции (середина 1700-х годов) ископаемое топливо способствовало быстрому развитию и расширению человеческой цивилизации, достигнув к 1800 году населения в 1 миллиард человек.

Так что же нам остается сегодня?

Современное общество в настоящее время находится на уровне 0,73 по шкале Кардашева. В то время как у нас есть шанс на Тип 1, неблагоприятные последствия сжигания ископаемого топлива оставили нас в острой необходимости в альтернативе.

Enter, альтернативная энергия - любой источник энергии, альтернативный статус-кво. Возобновляемые источники энергии, не производящие выбросов углекислого газа и других парниковых газов, которые способствуют антропогенному изменению климата.На altenergy.org мы стремимся охватить солнечную энергию, ветер, биомассу, гидроэнергетику, геотермальную энергию и другие углеродно-нейтральные источники энергии, которые помогут человечеству перейти к устойчивому будущему.

Солнечная энергия

Что может быть лучше для достижения статуса Типа I, чем получать энергию прямо из источника - солнечная энергия предполагает использование силы нашего солнца. От фотоэлектрических (PV) элементов, которые захватывают фотоны и преобразуют их в электричество, до солнечной тепловой энергии (STE), использующей солнечное тепло, солнечная энергия является одним из самых многообещающих альтернативных источников энергии на рынке сегодня.

Энергия ветра

Тысячи лет люди использовали ветер, чтобы толкать паруса, измельчать зерно и перекачивать воду. Сегодня ветряные мельницы используют турбины для преобразования энергии вращения в электричество, которое может надежно поступать в сеть. В более крупном масштабе, по прогнозам, к 2030 году ветряные электростанции будут обеспечивать до 20% мирового производства электроэнергии.

Биомасса

и биодизель являются одними из наиболее широко используемых возобновляемых источников энергии. В отличие от ископаемого топлива, которое производится геологическими процессами, которые могут длиться миллионы лет, биомасса обычно относится к биотопливу, полученному с помощью биологических процессов, таких как сельское хозяйство и анаэробное сбраживание.Такие виды топлива, как биоэтанол из кукурузы или биодизельное топливо из переэтерификации растительных масел, горят чище, чем традиционные ископаемые виды топлива, и могут помочь странам оставаться в рамках своих углеродных бюджетов.

Приливная сила

Приливы и отливы являются устойчивыми и предсказуемыми, что делает приливную силу жизнеспособным альтернативным источником энергии для регионов, где доступны высокие диапазоны приливов и отливов. Приливная электростанция Ранс во Франции - первая в мире крупномасштабная приливная электростанция, в которой для выработки электроэнергии используются турбины, во многом аналогичные гидроэлектростанциям для плотины.Совсем недавно CETO, волновая электростанция у побережья Западной Австралии, подключенная к сети, использовала серию буев и донных насосов для выработки электроэнергии.

Геотермальная энергия

Приблизительно 1,4 x 1021 джоулей тепловой энергии проходит к поверхности Земли каждый год. Регионы с высоким уровнем геотермальной активности, такие как Исландия и Индонезия, могут использовать эту геотермальную энергию, имеющуюся в магматических каналах и горячих источниках, для вращения турбин, которые вырабатывают электричество или обеспечивают естественное отопление домов.

Мы называем это Альтернативной энергией.

Ежедневно мир производит углекислый газ, который выбрасывается в атмосферу Земли и будет оставаться там через сто лет.

Повышенное содержание углекислого газа увеличивает тепло нашей планеты и является основной причиной так называемого «эффекта глобального потепления». Один из ответов на глобальное потепление - заменить и модернизировать существующие технологии альтернативами, которые имеют сопоставимые или лучшие характеристики, но не выделяют углекислый газ.Мы называем это альтернативной энергией

.

К 2050 году одна треть мировой энергии должна будет производиться за счет солнечной, ветровой и других возобновляемых источников. Кто сказал? British Petroleum и Royal Dutch Shell, две из крупнейших нефтяных компаний мира. Изменение климата, рост населения и истощение запасов ископаемого топлива означают, что возобновляемые источники энергии должны будут играть более значительную роль в будущем, чем сегодня.

Альтернативная энергия - это источники энергии, которые не имеют нежелательных последствий, например ископаемое топливо или ядерная энергия.Альтернативные источники энергии являются возобновляемыми и считаются «бесплатными» источниками энергии. Все они имеют более низкие выбросы углерода по сравнению с традиционными источниками энергии. К ним относятся энергия биомассы, энергия ветра, солнечная энергия, геотермальная энергия, источники гидроэлектрической энергии. В сочетании с переработкой отходов использование экологически чистых альтернативных источников энергии, таких как использование в домашних условиях солнечных систем, поможет обеспечить выживание человека в 21 веке и в последующий период.

С экологической точки зрения лучше всего подходит солнечная энергия.Фотоэлектрическая система мощностью 1,5 кВт будет удерживать более 110 000 фунтов диоксида углерода, основного парникового газа, в атмосфере в течение следующих 25 лет. Та же самая солнечная система также избавит от необходимости сжигать 60 000 фунтов угля. Благодаря солнечной энергии нет ни кислотных дождей, ни городского смога, ни какого-либо загрязнения.

Человечество сошло с ума, что до сих пор не удосужилось использовать энергию солнца. Думать об этом. Выйдите на улицу в солнечный день. Свет, падающий на ваше лицо, покинул Солнце всего за 8 минут.За эти 8 минут он проехал 93 миллиона миль. Эти фотоны перемещаются, и когда они ударяются о ваш фотоэлектрический модуль, вы можете преобразовать это движение в электричество. Как технология, фотоэлектрические элементы не так хороши, как этот новый внедорожник, о котором нам говорит телевидение. Но во многих отношениях фотоэлектрическая энергия - гораздо более элегантная и сложная технология.

Будь то для вашего бизнеса или для вашего дома, почему бы не инвестировать в солнечные панели. Сегодняшние солнечные панели являются бомбоустойчивыми и часто имеют гарантию 25 или более лет.Ваши солнечные батареи могут пережить вас. Они также являются модульными - вы можете начать с небольшой системы и со временем расширить ее. Солнечные панели легкие (весят около 20 фунтов), поэтому, если вы переедете, вы можете взять систему с собой.

Сеточные интерактивные системы и нетто-учет

Некоторые коммунальные предприятия возражают против чистого учета. Обычно вопрос не в деньгах, а в контроле. Они не хотят, чтобы ваш сок попал в их провода, или они не хотят создавать прецедент, который может снова их преследовать. Вскоре появятся некоторые технологии распределенной генерации, которые коммунальные службы определенно не захотят использовать в чистом счетчике, включая топливные элементы и микротурбины мощностью 50 кВт размером с пивные бочки.Однако в США и Австралии поставщики электроэнергии все больше поддерживают схемы обратного выкупа солнечной энергии. Кроме того, теперь предприятия могут пользоваться преимуществами различных поставщиков как газа, так и электричества и делать покупки для наиболее экономичных.

Solar ратует за критику коммунальных предприятий. Но, несмотря на все недостатки, в отрасли было протянуто огромное количество проводов. Редко бывает, что американец, австралиец или европеец находится на расстоянии более 50 футов от электрической розетки. Мы считаем это обычным чудом как должное.С инженерной точки зрения сеть - это огромный ресурс. Подключенная к сети фотоэлектрическая система будет более эффективной, возможно, более экологичной и, безусловно, дешевле, чем та, что находится в глуши. Более эффективен, потому что инвертор может отслеживать "кривую максимальной мощности" модулей, а не более низкое напряжение, необходимое для зарядки батарей. Возможно, более экологичный, потому что вам не нужны батареи, которые содержат едкие химические вещества, выделяют сернистые газы и в конечном итоге изнашиваются. И намного дешевле, потому что с сетью в качестве резервной вам не нужно покупать батареи, контроллер заряда, панель управления или генератор.Здесь вы сколотите до 5000 долларов с типичной автономной системы. Снижение цены имеет решающее значение, потому что никому в сети не нужна фотоэлектрическая энергия, по крайней мере, в той степени, в которой она нужна автономному домовладельцу. У нас уже есть сок. Это может быть атомная бомба, может быть угольная электростанция, это может быть гидроэлектростанция (или «воплощенный лосось»), но он там. Чтобы продавать фотоэлектрические системы, подключенные к сети, вы должны снизить цену, а затем помочь потенциальным клиентам понять, что солнечная энергия для угля, как круассан для Twinkie.На интуитивном уровне многие люди уже понимают ключевое различие между ископаемым топливом и возобновляемой энергией. Один ворует у наших детей, другой - нет.

Текущая стоимость солнечных панелей означает, что сетевые интерактивные системы не окупаются с точки зрения экономии затрат по сравнению с электричеством из сети. Несмотря на это, многие люди с домами, подключенными к сети, предпочитают устанавливать сетевые интерактивные солнечные системы, поскольку они не создают парниковых газов при выработке электроэнергии, в отличие от электростанций, работающих на угле.Многочисленные исследования показали, что эквивалентное количество электроэнергии, используемой для изготовления солнечной панели, вырабатывается панелью в течение первых двух лет эксплуатации, следовательно, солнечная панель погасит свой «долг» по парниковым газам в течение этого времени.

Общества использовали энергию ветра на протяжении тысячелетий. Первое известное использование было в 5000 году до нашей эры, когда люди использовали паруса для навигации по реке Нил. Персы уже использовали ветряные мельницы в течение 400 лет к 900 году нашей эры, чтобы перекачивать воду и перемалывать зерно.Ветряные мельницы, возможно, даже были созданы в Китае до 1 года нашей эры, но самая ранняя письменная документация относится к 1219 году. Критяне использовали «буквально сотни ветряных мельниц с парусным ротором [для] перекачивания воды для сельскохозяйственных культур и скота».

Сегодня люди осознают , что энергия ветра «является одним из самых многообещающих новых источников энергии», который может служить альтернативой электричеству, произведенному на ископаемом топливе. Стоимость ветроэнергетики снизилась на 15% с каждым удвоением установленной мощности во всем мире, а мощность удвоилась три раза в течение 1990-х и 2000-х годов.По состоянию на 1999 г. мировая мощность ветроэнергетики превысила 10 000 мегаватт, что составляет примерно 16 миллиардов киловатт-часов электроэнергии. По данным Американской ассоциации ветроэнергетики, этого достаточно для обслуживания более 5 городов размером с Майами. Пять Майами могут показаться незначительными, но если мы сделаем прогнозируемые шаги в ближайшем будущем, энергия ветра может стать одним из наших основных источников электроэнергии.

Хотя энергия ветра сейчас более доступна, на более доступна и не загрязняет окружающую среду, у нее есть некоторые недостатки.Энергия ветра страдает от того же недостатка плотности энергии, что и прямое солнечное излучение. Тот факт, что это «очень рассеянный источник», означает, что «требуется большое количество ветряных генераторов (и, следовательно, большие площади суши) для производства полезного количества тепла или электроэнергии». Но ветряные турбины не могут быть установлены везде просто потому, что во многих местах недостаточно ветрено для выработки подходящей энергии. Когда подходящее место найдено, строительство и обслуживание ветряной электростанции может оказаться дорогостоящим. Это «очень капиталоемкая технология.«Если процентные ставки, взимаемые за производство оборудования и строительство завода, высоки, то потребителю придется платить больше за эту энергию». Одно исследование показало, что если ветряные электростанции будут финансироваться на тех же условиях, что и газовые, их стоимость снизится. почти на 40% ». К счастью, чем больше построено объектов, тем дешевле энергия ветра.

Но все больше энергии вкладывается в поиски многих других альтернативных источников энергии и обеспечение их жизнеспособности, таких как геотермальная энергия, энергия волн и биомасса!

14 альтернативных источников энергии, которые могут иметь значение

Растут альтернативные источники энергии

В энергетическом секторе ископаемых видов топлива источников были основным источником энергии из-за их относительно низкой цены.Однако наша потребность в энергии прогнозируется, что вырастет на в будущем, и мы больше не можем полагаться на конечных и , загрязняющих источников энергии. За последнее десятилетие мы увидели положительных сдвигов и в сторону расширения наших мощностей по возобновляемым источникам энергии как на местном, так и на глобальном уровне.

Панели солнечных батарей, ветряные турбины , установленные на суше и на море, и гидроэлектростанции - вот некоторые из альтернативных энергетических технологий , которые будут обеспечивать наши будущие потребности в энергии .Наша зависимость от природного газа и нефти является самой большой причиной экологического ущерба, и в энергетическом секторе только несет ответственность за 1,7% увеличение углекислого газа в нашей атмосфере. Таким образом, альтернативные источники энергии будут в центре внимания для предотвращения дальнейшего воздействия изменения климата на нашу планету.

Согласно ежегодной статистике IRENA по возобновляемым мощностям за 2019 год, глобальные возобновляемых генерирующих мощностей достигли 2351 ГВт и .Из трех альтернативных источников энергии с наибольшим процентом:

1. Гидроэнергетика составляет 1172 ГВт, , что составляет примерно половину от общей суммы.
2. Береговая и морская ветровая энергия занимает второе место с мощностью 564 ГВт.
3. Мощность солнечной энергии немного меньше - 480 ГВт, разделенных на солнечную фотоэлектрическую и солнечную тепловую энергию.

Альтернативная энергия источников Прогнозируется до расширение в каждом секторе к 2023 .Электроэнергетический сектор имеет наибольшую долю 30% , а на пути декарбонизации электрификация станет основным энергоносителем , большая часть которого будет вырабатываться за счет возобновляемых источников энергии.

Отопление занимает второе место с 12%, а сектор транспорта идет последним с лишь 3,8% альтернативных источников энергии, требующих улучшения.

В приведенной ниже инфографике GreenMatch выделяет текущий и будущий объем альтернативных источников энергии, а также дает обзор инвестиций и будущих прогнозов на нашем пути к устойчивому будущему .

Если вы хотите использовать эту инфографику, используйте код для встраивания ниже:

Получить код для встраивания

 14 альтернативных источников энергии

Инвестиции в 2019 году замедляются?

В соответствии с планом реализации, установленным Парижским соглашением , совокупные инвестиции в экологически чистую энергию должны составить долларов США, 110 трлн ., или около 2% (среднего) годового валового внутреннего продукта за этот период.

Увеличение тяги к альтернативным источникам энергии снизило затраты, особенно на солнечную энергию. Согласно отчету REN21 о состоянии возобновляемых источников энергии за 2019 год, глобальные инвестиции в новые мощности достигли 288,9 млрд долларов США. , без учета гидроэнергетики свыше 50 МВт.

Китайское правительство прекратило свои схемы субсидирования , потому что солнечная энергия теперь считается доступной по цене и ведет к отсутствию развертывания солнечной энергии в Китае.В результате цифры показывают на 11% меньше инвестиций по сравнению с 2017 годом.

Аналогичным образом, в апреле 2019 года схема льготных тарифов в Великобритании прекратила действие для новых заявителей, желающих использовать альтернативную энергию.

Инвестиции Прогноз предусматривает стабилизацию и рост инвестиций для следующего обзора. До сих пор Китай является крупнейшим инвестором по странам. Снижение расходов на солнечную энергию . из-за субсидии существенно повлияли на общее количество, демонстрируя явное доминирование на рынке возобновляемых источников энергии.

Объем будущих альтернативных источников энергии

Более широкое внедрение альтернативных источников энергии зависит от еще более эффективных возобновляемых технологий и реструктуризации электроэнергетической отрасли. С использованием возобновляемых источников энергии производство чистой энергии возможно на бытовом уровне с такими технологиями, как солнечные панели , , тепловые насосы и котлы на биомассе.

Чтобы в полной мере использовать энергию, которая в основном зависит от погоды или , зависящей от времени , нам еще предстоит придумать лучшие решения для хранения энергии .

Землепользование и рост населения

При росте численности населения прогнозируется 9,7 млрд. к 2050 г. и г. более широкое использование крупных солнечных ферм может оказаться не лучшим решением, поскольку они занимают много земли. Минимизация площади земельного участка имеет решающее значение, или разрабатывает более эффективные технологии , такие как преобразователи энергии ветра .

Ветровая энергия в настоящее время является одним из наиболее важных альтернативных источников энергии в Великобритании и обеспечивает примерно 4 млн.дома. Оффшорный Ветер все еще недостаточно развит из-за дорогостоящего обслуживания и расположения в глубоких водах, но в будущем мы сможем более эффективно вырабатывать энергию из океанов и глубинных вод .

Недостатки в конструкции существующих ветряных турбин ограничивают потенциал использования энергии ветра, неспособного преодолевать ветры на больших высотах. Будущая бортовая технология может проложить путь с гораздо более многообещающим радиусом действия от до 500 м , где ветры на сильнее .

Один из наиболее дорогостоящих проектов на ранней стадии - это получение солнечной энергии из помещения . Прототип состоит из оптических отражателей, фотоэлементов, преобразующих солнечный свет в энергию, и схемы, преобразующей электричество в радиочастоты. Затем встроенная антенна будет передавать энергию обратно на Землю.

В будущем этот инновационный альтернативный источник энергии сможет удовлетворить потребности в энергии нашего растущего населения без ограничений, используя постоянный солнечный свет из космоса.

Хранение зеленой энергии

Эффективный аккумулятор жизненно важен для более широкого внедрения альтернативных источников энергии. Солнечная фотоэлектрическая энергия зависит от прямого солнечного воздействия, а это означает, что значительная часть энергии идет неиспользованной или тратится впустую из-за отсутствия встроенных солнечных аккумуляторных батарей.

В будущем водород станет движущим источником энергии. В настоящее время большая часть производится из ископаемого топлива. Однако излишков альтернативной энергии также используется для производства газообразного водорода.Применения универсальны - газообразный водород можно подавать в сеть природного газа или с помощью топливных элементов для обратного преобразования в электричество. Водород можно было бы широко использовать в транспортном секторе, когда мы сможем предложить менее дорогостоящих решений для более широкого внедрения таких альтернативных источников энергии.

Водород имеет максимальную по массе из всех видов топлива, что делает его более подходящим для распределения и хранения. Его стабильный химический состав также означает, что может удерживать энергию на лучше, чем любая другая среда.

В будущем создание инфраструктуры снабжения и хранения позволит более эффективно использовать водорода. В планы на будущее для водорода входит строительство подземной системы хранения , где избыточная энергия ветра, например, может быть преобразована в водород посредством электролиза .

Альтернативная энергетика и инфраструктура

Наша текущая глобальная инфраструктура адаптирована только для ископаемого топлива. На создание нового уйдут годы и огромных ресурсов .В последние годы автономных технологий , основанных на альтернативной энергии, смогли обеспечить питание удаленных пунктов в виде мини- или локальных сетей.

Полная децентрализация сети предоставит клиентам возможность продавать электроэнергию обратно в сеть, а получит контроль над необходимой и потребляемой энергией . Однако Великобритания еще далека от полной децентрализации из-за масштабов необходимых преобразований.

Ряд из предприятий , однако, можно считать пионерами в автономной реструктуризации в Великобритании, например, UPS и некоторые из гигантов розничной торговли и супермаркетов .

Расширение масштабов альтернативной энергетики откроет еще рабочих мест в секторе устойчивой энергетики. Рост и внедрение во всех секторах потребуют лет планирования и значительных инвестиций .

Чтобы гарантировать будущее без дальнейших выбросов парниковых газов, мы можем начать с введения более запретов на будущие проекты по ископаемому топливу и более строгие цели по выбросам .

Написано Рамона Гошева Контент-писатель Рамона - автор контента в GreenMatch, уделяющий большое внимание экологическим вопросам и устойчивости.Она получила образование в области творчества и письма для СМИ, а также имеет опыт создания мероприятий и создания контента для различных сред.

альтернативных источников энергии | Учебники по альтернативной энергии

Альтернативные источники энергии Статья Учебники по альтернативной энергии 14.06.2010 08.02.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Какие бывают типы альтернативных источников энергии

В предыдущем уроке было видно, что ископаемое топливо - это останки мертвых растений и животных, которые были похоронены глубоко под землей на протяжении миллионов лет.Со временем и с помощью огромного количества тепла и давления эти углеродные остатки медленно превратились в горючие углеводородные вещества, такие как сырая нефть, уголь и природный газ. Но двух из этих источников энергии, нефти и природного газа, не хватает, поэтому мы должны найти новые альтернативные источники энергии, чтобы заменить их.

Поиск альтернативных источников энергии и различных видов альтернативной энергии - это глобальные усилия. Многие государственные органы, университеты и ученые работают над разными способами замены традиционных ископаемых видов топлива.Альтернативные источники энергии заполняют пробел между нереалистичными источниками бесплатной энергии и более традиционными видами ископаемого топлива, такими как нефть, газ и уголь. Когда-то ядерная энергия рассматривалась как ответ на нашу глобальную проблему. Огромное количество энергии, которое можно было получить из небольшого количества урана, рассматривалось как путь вперед для обеспечения энергией нашего завода. Но, как мы знаем, как и ископаемое топливо, уран также является естественным и конечным ресурсом.

Существует много различных типов альтернативной энергии, каждый из которых имеет свои преимущества и недостатки, но чтобы получить максимальную отдачу от этих экологически чистых альтернатив ископаемому топливу, мы сначала должны понять, что такое Альтернативные источники энергии и как мы можем использовать их в качестве альтернативы сжиганию ископаемого топлива.

Что такое альтернативная энергия

Альтернативная энергия обычно относится к любой группе нетрадиционных источников топлива, в которых не сжигаются ископаемые виды топлива или не используются какие-либо природные ресурсы, что может привести к ущербу или вреду для окружающей среды. Другими словами, «Альтернативная энергия» - это чистая энергия, по крайней мере теоретически. Альтернативные источники энергии обеспечивают множество преимуществ по сравнению с использованием более традиционных ископаемых видов топлива, таких как меньшее вредное загрязнение и более низкие цены на топливо.

Обратной стороной, однако, является то, что альтернативные источники энергии не всегда доступны, когда они нам нужны, так как иногда не дует ветер или не светит солнце.Фактически, из-за ночного и дневного цикла Земли солнечная энергия уже неэффективна на 50% еще до того, как мы собираем даже один луч солнечного света для преобразования. К счастью для нас, с помощью новейших технологий зеленой энергии, доступных сегодня, мы можем в полной мере использовать эти альтернативы, когда они доступны.

Большинство источников альтернативной энергии зависят от очевидных, естественных источников энергии, таких как солнце, ветер и вода. Солнце ежедневно покрывает землю солнечным светом, который может превращаться в тепло или электричество.Движение ветра и рек производит кинетическую энергию (энергию движущегося вещества), в то время как океанские приливы поднимают и опускают уровень моря с непреодолимой силой. Все эти источники обладают потенциалом для производства пригодных для использования альтернативных источников энергии.

Энергия существует во многих различных формах, и законы физики говорят нам, что энергия обладает способностью совершать работу, то есть способностью заставлять вещи происходить. Некоторые формы энергии, такие как солнечная энергия, переносят энергию от солнца на землю или химическая энергия используется в батареях для производства электричества.

Другие формы энергии нельзя увидеть, пока не высвободится энергия, например, тепло. В любом случае энергия может быть преобразована из одной формы в другую, но никогда не теряется. Например, химическая энергия ископаемого топлива может быть преобразована в тепло или кинетическая энергия движущейся воды преобразована в электричество.

Но вот в чем проблема. Хотя законы физики говорят нам, что энергия никогда не может быть создана или уничтожена, только преобразована из одной формы в другую, химическая энергия в ископаемом топливе, которая выделяется во время горения, не только производит полезное тепло, но также выделяет большое количество углекислого газа в виде побочный продукт.

Двуокись углерода считается парниковым газом с накоплением двуокиси углерода в атмосфере, способствующей возникновению кислотных дождей и глобального потепления. Тогда альтернативная энергия может помочь удовлетворить потребности в энергии устойчивым, экологически безопасным, экологически безопасным способом, не загрязняющим окружающую среду.

Какие альтернативные источники энергии

Что ж, в основном альтернативные источники энергии - это виды энергетического топлива, которые можно использовать вместо сжигания ископаемого топлива или расщепления атомов.Но альтернативные источники энергии не одинаковы, поскольку их применение, экономика и выработка энергии разные. Существует несколько популярных альтернативных источников энергии, таких как биомасса, ветер, солнечная энергия, геотермальная энергия и гидроэнергия.

Самым ранним источником энергии была древесина, в виде деревьев, бревен, веток и т. Д. Этот потенциальный источник энергии широко использовался для отопления, освещения (пламя) и приготовления пищи. Но чрезмерное чрезмерное использование этого источника энергии привело к обширной глобальной вырубке лесов.В большинстве случаев альтернативные источники энергии не выбрасывают в атмосферу углекислый газ или ядовитые выбросы, за исключением топлива из биомассы. Тогда наиболее распространенными формами альтернативных источников энергии являются: -

Альтернативные формы энергии - солнечная

  • Солнечная энергия - Солнечная энергия, безусловно, является крупнейшим домашним использованием альтернативной энергии. Лучистая энергия, полученная из солнечного света, преобразуется в электрическую энергию с помощью солнечных фотоэлектрических элементов и фотоэлектрических панелей, производящих альтернативную энергию, известную как «солнечная энергия».Затем эту солнечную энергию можно использовать для питания наших домов и рабочих мест…. Узнать больше >>
  • Солнечное отопление - Солнечное тепловое отопление использует энергию солнца для нагрева воды или других жидкостей, таких как термальное масло, протекающее через набор теплопроводящих труб, заключенных в солнечную панель или отражающую тарелку. Солнечное водонагревание - это экономичный способ произвести много дешевой горячей воды для вашего дома, просто используя энергию солнца… Узнать больше >>
  • Солнечное отопление бассейна - Все мы знаем о преимуществах использования энергии солнца для нагрева воды.Солнечная энергия может быть использована в солнечном нагреве бассейна, чтобы помочь нагреть воду в бассейне без необходимости в дорогостоящих электрических нагревателях бассейна, увеличивая использование бассейна до четырех месяцев, просто используя энергию солнца ... Узнать больше >>

Альтернативные формы энергии - ветер

  • Энергия ветра - Энергия ветра - это энергия или энергия, получаемая от движения ветра через ветряные мельницы, паруса и, чаще, ветряные турбины. Ветроэнергетика - это преобразование кинетической энергии ветра в механическую энергию для привода машин или насосов или в электрическую энергию для питания наших домов….Узнать больше >>

Альтернативные формы энергии - вода

  • Приливная энергия - Приливная энергия использует движение или кинетическую энергию морей и океанов для выработки электроэнергии. Новые технологии гидроэнергетики, такие как морские и гидрокинетические устройства, могут преобразовывать энергию волн, приливов, океанских течений и естественного течения рек в экологически чистую энергию…. Узнать больше >>
  • Hydro Energy - Гидроэнергетика использует энергию, производимую путем перемещения воды с помощью водяных колес и водяных турбин.Наиболее распространенной формой гидроэнергетики является гидроэнергетика. При этом используется потенциальная энергия воды в больших водохранилищах и плотинах для вращения электрических турбин для выработки электроэнергии…. Узнать больше >>

Альтернативные формы энергии - Земля

  • Геотермальная энергия - Геотермальная энергия - это альтернативный источник энергии, который использует естественное тепло, скрытое глубоко в ядре Земли, в качестве источника энергии. Вода, нагретая за счет подземной магматической активности, выкачивается на поверхность и используется для выработки электроэнергии или обогрева зданий.Хороший пример использования геотермального тепла - это горячие источники и гейзеры…. Узнать больше >>
  • Биомасса - Энергия биомассы производится из сельскохозяйственных культур и растительных материалов, таких как древесина, опилки, торф и солома, выращенных специально для сжигания в качестве топлива. Как следует из названия, биоэнергетика - это энергия, получаемая из биомассы (органического вещества), которая является устойчивой, поскольку новые культуры и леса выращиваются вместо тех, которые были собраны…. Узнать больше >>

Зачем нужны альтернативные источники энергии

Мы увидели, что существует множество различных типов альтернативных источников энергии, позволяющих уменьшить нашу зависимость от ископаемого топлива, но некоторые из этих альтернативных источников энергии, указанных выше, не новы.На протяжении веков люди использовали силу проточной воды в реках и ручьях для различных нужд, особенно для сельского хозяйства и транспорта.

Кроме того, водяные колеса и ветряные мельницы использовались на протяжении тысячелетий для измельчения кукурузы и шелухи для производства муки для хлеба и различных продуктов. Даже пассивная солнечная энергия использовалась для обогрева домов и сушки одежды. В то время как некоторые формы указанных выше альтернативных источников энергии на самом деле являются усовершенствованием давно существующих технологий, другие являются действительно новыми, например, биоэнергетика, топливные элементы и солнечные панели.

Чтобы узнать больше о различных доступных «Альтернативных источниках энергии» или понять преимущества и недостатки использования альтернативной энергии в доме. Тогда почему бы не щелкнуть здесь и не получить на Amazon копию одной из лучших сегодня книг об альтернативных источниках энергии, чтобы узнать больше о том, как использовать альтернативные источники энергии в вашем доме для экономии денег и окружающей среды.

Альтернативная энергия | Учебники по альтернативной энергии

Альтернативой энергии Статья Учебники по альтернативной энергии 14.06.2010 08.02.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Будущее альтернативной энергетики

Энергия является основой жизни человека и играет важную роль везде, где человек живет или работает.Качество жизни, уровень жизни и процветание нации варьируется прямо пропорционально увеличению того, как мы используем энергию, практически без какой-либо активности или момента, которые не зависят от какой-либо формы энергии для ее работы.

Мировые потребности в электричестве растут с угрожающей скоростью, каждое мгновение дня мы используем все больше и больше энергии из-за все более широкого использования электрических и электронных устройств как на работе, так и дома. Таким образом, существует значительный потенциал для разработки различных типов Альтернативных источников энергии , которые помогут подпитывать нашу постоянно растущую зависимость от энергии и особенно от энергии ископаемого топлива.

Энергия Солнца питает Землю

Но что мы подразумеваем под «альтернативной энергией», что такое альтернативная энергия? Большинство из нас думает об альтернативной энергии как о солнечных панелях на крыше, которые превращают энергию солнца в горячую воду или электричество. Но альтернативная энергия - это гораздо больше. Некоторые из этих альтернативных источников энергии отнюдь не новы, поскольку на протяжении сотен лет люди использовали ветер, воду и солнце для всех видов использования, включая приготовление пищи, отопление, сельское хозяйство и транспорт.

Хотя некоторые формы современных альтернативных источников энергии на самом деле являются лишь новыми разработками давно существующих и хорошо зарекомендовавших себя технологий, таких как ветряные турбины для энергии ветра или водяные колеса для гидроэнергетики, но другие виды альтернативной энергии действительно новые, такие как атомная энергия, этанол биотопливо и фотоэлектрическая энергия.

Выражение «энергия» часто используется без особых размышлений и применяется в различных контекстах. Проще говоря, Energy - это способность выполнять работу, способность заставлять вещи происходить.Но на самом деле он делает гораздо больше. Энергия - один из самых ценных наших ресурсов, и он всегда существовал в той или иной форме. Почти вся энергия, доступная нам здесь, на Земле, изначально была получена из энергии, созданной Солнцем, которое представляет собой не что иное, как один гигантский термоядерный реактор. Но как только эта энергия покидает Солнце, она преобразуется в другие формы энергии на Земле, такие как тепло и свет, генерирующие ветер, дождь, реки и волны, которые мы можем использовать в качестве альтернативного источника энергии.

Термин «альтернативная энергия» относится к любой форме энергии, которая является альтернативой более традиционным трем источникам ископаемого топлива: нефти, природному газу и углю.Но выражение «альтернативные источники энергии» обычно используется для сравнения нефтяного масла во всех его различных формах с другими формами возобновляемой энергии. Хотя ни одна из этих «альтернатив» не кажется полностью равной нефти с точки зрения ее гибкости и энергоемкости, нефть, как и другие формы ископаемого топлива, является ограниченным ресурсом и в конечном итоге будет исчерпана. Отсюда необходимость использования альтернативных источников энергии.

Три типа ископаемого топлива: уголь, нефть и природный газ - самые важные виды топлива, которые мы используем сегодня, и современный мир в значительной степени полагается на эти невозобновляемые источники для удовлетворения большинства своих энергетических потребностей.Но эти источники энергии не будут работать вечно, и с сокращением глобальных запасов ископаемого топлива, увеличивающейся угрозой их постоянной безопасности, в сочетании с их вкладом в изменение климата, которое оказалось основной причиной экологических проблем и вредного углекислого газа ( CO 2 ), теперь мы должны рассмотреть альтернативы.

Даже если бы у нас были неограниченные запасы ископаемого топлива, использование альтернативных источников энергии намного лучше для окружающей среды, планеты и жизни человека в целом.Преимущества Альтернативная энергия в том, что она возобновляемая, устойчивая или потенциально устойчивая и экологически безвредная. Мы часто думаем об альтернативных энергетических технологиях как об «чистых» или «зеленых», потому что они производят очень мало или вообще не производят загрязняющих веществ.

Однако недостатками альтернативной энергии являются их низкая плотность, более высокие начальные инвестиционные затраты и изменчивость источников, требующих накопления энергии или некоторой формы альтернативной резервной энергии, такой как генератор, когда солнце не светит или ветер не светит. дуть.

Осознавая, что с практической точки зрения нефть - это не предел, все больше внимания уделяется альтернативным источникам энергии, которые могут заменить нефть. Поскольку спрос на альтернативные источники энергии увеличивается с каждым годом из-за потребности в чистых и возобновляемых источниках энергии.

Альтернативные формы энергии повсюду вокруг нас - ветер, волны и приливы, а также энергия Солнца - изобильный источник силы. В настоящее время существует шесть основных форм альтернативной энергии, которые можно разделить на две категории: возобновляемые или невозобновляемые источники энергии из одного или нескольких из следующих.

  • Возобновляемая энергия: Возобновляемая энергия может быть определена как энергия, полученная из естественных и постоянных источников энергии, возникающих в непосредственной близости, таких как солнечная энергия (солнечная энергия). Эта энергия постоянно пополняется быстрее, чем расходуется, что делает этот тип энергии «бесконечным ресурсом».

    Возобновляемая энергия проходит через окружающую среду в виде тока (ветер), электромагнитного излучения (солнечный свет) или потока (вода), независимо от того, существует ли устройство для перехвата или использования этой энергии.Такую энергию можно также назвать «Зеленая энергия» или «Устойчивая энергия».
  • Невозобновляемая энергия: Невозобновляемая энергия, с другой стороны, определяется как энергия, полученная из невозобновляемых статических источников энергии. Эти энергетические ресурсы остаются погребенными под землей, если они не высвобождаются в результате взаимодействия человека. Невозобновляемые источники энергии обычно называют ископаемыми видами топлива, которые включают уголь, нефтяное масло, природный газ и некоторые виды радиоактивного ядерного топлива.

    Этот энергетический ресурс расходуется быстрее, чем он может быть восполнен естественными системами Земли, что делает этот вид энергии «конечным ресурсом».Невозобновляемая энергия - это запасенная потенциальная энергия, и требуется внешнее воздействие, такое как горение, чтобы инициировать подачу энергии для практических целей. Такие источники энергии обычно называют «конечными поставками» или «коричневой энергией».

Наиболее распространенным источником «альтернативной энергии», доступным сегодня, является гидроэлектроэнергия, за которой следуют энергия ветра и солнца. Далее следует обзор различных видов альтернативной энергии, но сначала мы должны различать альтернативную энергию и возобновляемый источник энергии.Альтернативная энергия относится к любой форме энергии, которая является альтернативой традиционным ископаемым видам топлива нефти, природного газа и угля. Возобновляемая энергия - это формы альтернативной энергии, которые возобновляются естественными процессами на Земле, такими как солнечный свет от солнца или ветер с воздуха, и поэтому являются экологически чистыми.

В то время как мы намерены в этих учебных пособиях по альтернативной энергии охватывать все типы альтернативных источников энергии и возобновляемых источников энергии, мы начнем с обзора возобновляемых источников энергии.Шесть основных видов возобновляемой энергии:

  • 1. Гидроэнергетика: наиболее давно используемая форма альтернативной энергии и энергии, существующая тысячи лет назад. Плотины и водяные колеса используют потенциальную и кинетическую энергию воды в качестве источника энергии для измельчения кукурузы и производства муки. На гидроэнергетику приходится почти пятая часть всей электроэнергии, вырабатываемой во всем мире с помощью плотин и гидроэнергетики. Использование энергии, содержащейся в воде, текущей вниз с холма на более низкую высоту, является высокоэффективным, но ограниченным необходимостью подходящих природных ресурсов, таких как горы, озера и сила тяжести.
  • 2. Солнечная энергия: Солнечный свет содержит в тысячи раз больше доступной энергии, чем люди могут когда-либо использовать, но использование его может быть дорогостоящим. Один из распространенных методов - фотоэлектрические элементы. Они превращают солнечный свет в электричество, но работают только с максимальной эффективностью немногим более 20 процентов. Они также дороги в производстве и покупке. В системах солнечного отопления используются плоские панели для улавливания солнечного тепла для нагрева бытовой горячей воды с помощью больших коммерческих установок с использованием зеркал для отражения солнечного тепла на центральный поглотитель тепла для максимальной эффективности.
  • 3. Энергия ветра: Еще одна хорошо зарекомендовавшая себя форма альтернативной энергии, используемая на протяжении сотен лет мельницами и ветряными мельницами. Вид массивных ветряных турбин, мягко кружащихся на вершине большого холма или возвышенности, сейчас становится все более распространенным явлением. Однако такие турбины и связанные с ними ветряные электростанции вызвали множество дискуссий среди защитников окружающей среды, причем некоторые зеленые активисты утверждали, что длинные ряды ветряных турбин наносят ущерб естественной красоте сельской местности, производят экологический шум и могут убить слишком много птиц своими постоянно вращающимися лопастями.
  • 4. Волновая и приливная энергия: хотя они все еще находятся на стадии разработки, это две океанические технологии с высоким потенциалом для обеспечения чистого, бесплатного альтернативного источника энергии в будущем. Энергия волн использует кинетическую энергию приливов и отливов океанических волн и приливов, удерживая воду в приливных заграждениях или в подводных туннелях, которая затем используется для вращения приливных турбин. В приливной энергии также используются большие турбины, прикрепленные к морскому дну или чуть ниже поверхности волн, чтобы улавливать энергию сильных приливных течений.
  • 5. Ядерная энергия: Ядерная энергия не является строго возобновляемым источником энергии, но может рассматриваться как альтернативная форма энергии по сравнению с ископаемым топливом. В мире имеется ограниченное количество урана, который необходимо как добывать, так и очищать, поэтому многие считают его невозобновляемым источником энергии, но конструкция современных ядерных реакторов становится более безопасными и эффективными, чем те, которые использовались в прошлом, ядерная энергия становится достаточно мощной, чтобы оказать реальное влияние на сокращение использования ископаемого топлива.
  • 6. «Альтернативные» ископаемые виды топлива: Многие считают, что на Земле осталось достаточно ресурсов нефти, угля и природного газа, чтобы их хватило на нас как минимум еще на 500 лет, и что более чистое и эффективное сжигание ископаемого топлива - это путь вперед. Предложения включают «хранение» вредных выбросов углекислого газа глубоко под землей, смешивание и совместное сжигание угля с биомассой, а также улучшение способов добычи и сжигания ископаемого топлива. Для многих это наиболее реальный способ сохранить наши невозобновляемые источники энергии и окружающую среду.

Достаточно ли альтернативной энергии

Наша интерпретация Альтернативная энергия лучше, потому что «альтернативные источники энергии» или «альтернативные источники энергии» могут иметь другое значение, гораздо более широкое, чем просто Альтернатива или Возобновляемая энергия . Альтернативная энергия - это все об источниках энергии, которые отличаются друг от друга или являются альтернативой, или заменой традиционного ископаемого топлива. Большинство источников «альтернативной энергии» зависят от очевидных, естественных источников энергии, и в этих источниках энергии нет ничего нового.

Люди всегда использовали солнце для освещения своих домов, сушки одежды или обогрева пищи в течение тысяч лет, но многие альтернативные или возобновляемые источники энергии, особенно гидроэлектроэнергия, ветер и солнечная энергия, уже обеспечивают значительное количество энергии или энергии. по крайней мере, в ближайшем будущем способны обеспечить значительное количество зеленой энергии. Эти источники энергии имеют много преимуществ перед ископаемым топливом, но также имеют свои ограничения.

Может ли Альтернативные источники энергии заполнить пробел? На энергетическую проблему нет простых ответов, даже лучшие энергетические технологии будущего могут быть сложными, опасными и дорогими.Однако одно можно сказать наверняка: все способы заставить энергию в той или иной степени навредить Земле. Следовательно, независимо от того, откуда берется наша энергия, мы не должны тратить ее зря.

Жить более энергоэффективной жизнью легко, поскольку ученые и инженеры работают над более эффективными холодильниками, автомобилями, фарами и другими устройствами и т. Д. Мы все можем внести свой вклад в сохранение значительного количества энергии, просто выключив свет. Телевизор и другие электрические устройства, когда мы их не используем. Со временем мы все можем по-разному выбирать, сколько энергии использовать и как ее использовать.Более энергоэффективный мир - это мир, который легче снабжать энергией, независимо от ее источника.

В следующем уроке о Альтернативная энергия мы рассмотрим различные типы ископаемого топлива, потребляемого в настоящее время.

видов альтернативной энергии | Учебники по альтернативной энергии

Типы альтернативной энергии Статья Учебники по альтернативной энергии 14.06.2010 08.02.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Различные типы альтернативных источников энергии

Альтернативная энергия определяется в первую очередь как возобновляемый и устойчивый источник энергии.Но существует множество различных типов альтернативных источников энергии , включая возобновляемые источники энергии и другие доступные формы низкоуглеродных технологий. В отличие от огромных гидроэлектростанций и водохранилищ, более инновационные формы технологий использования возобновляемых источников энергии снижают их воздействие на окружающую среду и поэтому лучше подходят для стран с обширными ветровыми, солнечными, биомассовыми или другими возобновляемыми источниками энергии. Но сначала давайте начнем с точного определения того, что «нельзя» классифицировать или определять как «тип альтернативной энергии».

Ядерная энергия НЕ является видом альтернативной энергии - Хотя это правда, что ядерная энергия является более чистой альтернативой сжиганию ископаемого топлива и что атомные электростанции не загрязняют воздух ядовитыми выбросами углекислого газа, диоксида серы или оксида азота, поскольку Что касается ископаемого топлива, то ядерная энергия по-прежнему относится к категории ископаемого топлива, как и уголь, поэтому не может быть отнесена к категории альтернативной энергии. Запасы урана - это природный ресурс Земли, который ежедневно истощается, как уголь, из-за чего его добыча и переработка с течением времени становятся все дороже.

На атомных перерабатывающих предприятиях и на атомных электростанциях образуются радиоактивные отходы, которые могут стать причиной экологических катастроф. Кроме того, ядерная энергия не является жизнеспособным решением для транспортировки или может использоваться внутри страны. Таким образом, хотя ядерная энергия представляет собой отход от сжигания обычных ископаемых видов топлива, это более традиционная форма энергии, а не альтернативная форма.

Повышение эффективности использования ископаемого топлива НЕ является одним из видов альтернативной энергии. - Это реальность, что ископаемое топливо будет оставаться важным энергетическим ресурсом в ближайшие десятилетия.Уменьшение количества парниковых газов, сбрасываемых в нашу атмосферу, за счет более чистого сжигания ископаемого топлива, разработки чистых угольных технологий или за счет улучшения способов использования и сжигания ископаемого топлива, что делает их более эффективным источником энергии, генерирующим мало углекислого газа или совсем без него, например хранение токсичных выбросов под землей может улучшить текущую ситуацию, но не является альтернативой различным доступным видам альтернативной энергии.

Сжигание древесины вместо угля НЕ является видом альтернативной энергии - Хотя это правда, что древесина не является ископаемым и возобновляемым (деревья растут) топливом для сжигания, сжигание древесины создает дым, золу, сажу и больше беспорядка, чем другие виды горючего топлива вместе взятого.Сжигание древесины в открытом огне неэффективно и очень дымно, выделяя большое количество твердых частиц в атмосферу, поскольку сгораемая древесина обычно низкого качества, свежесрезанная, влажная или представляет собой древесный лом из-за того, что девственная древесина более высокого качества пиломатериалы используются в строительстве зданий или для изготовления мебели.

Сжигание древесины для получения энергии приводит к крупномасштабной вырубке лесов, деградации земель и даже к незаконным рубкам из-за вырубки огромных площадей деревьев.Кроме того, вырубка деревьев на дрова нарушает естественную экосистему и среду обитания животных, которые сами могут оказаться под угрозой исчезновения или исчезнуть раньше, чем мы узнаем об этом. Тогда, хотя сжигание древесины может быть устойчивым источником, оно не является альтернативой различным доступным типам альтернативных источников энергии.

С положительной стороны, устойчивое лесопользование обеспечивает достаточные запасы топливной древесины, поскольку новые деревья высаживаются после вырубки старых. Древесные пеллеты и древесные брикеты представляют собой сухое сжатое топливо из биомассы, получаемое из опилок, стружки, древесной щепы и других древесных отходов, образующихся из остатков и побочных продуктов механической деревообрабатывающей промышленности.

При использовании в качестве топлива для отопления эти обработанные древесные материалы производят больше энергии, чем обычные дрова. Кроме того, усовершенствования печей для сжигания и дровяных печей сокращают расходы на использование топливной древесины, а также на переработку сыпучей древесины, щепы, опилок и других видов древесных материалов в более компактные древесные гранулы меньшего размера.

Теперь, когда мы, надеюсь, лучше понимаем, что не является альтернативной энергией, давайте посмотрим, какие существуют различные типы альтернативных источников энергии.

Типы альтернативной энергии и определения

В основном альтернативные источники энергии - это типы энергетического топлива, которые можно использовать вместо сжигания ископаемого топлива, при этом наиболее распространенными формами альтернативных источников энергии являются: -

Поскольку более 80% мирового энергоснабжения приходится на ископаемые виды топлива, поскольку они удобны и относительно дешевы в производстве и транспортировке, в настоящее время используются различные типы альтернативных источников энергии. Но при сжигании ископаемого топлива в виде угля и бензина в атмосферу выделяется вредный углекислый газ, что приводит к глобальному потеплению и парниковому эффекту из-за загрязнения атмосферы.

Истощение ресурсов ископаемого топлива и увеличение загрязнения окружающей среды привело к исследованию Альтернативных источников энергии с основной концепцией альтернативной энергии, которая заключается в устойчивости, возобновляемости и сокращении количества производимого глобального загрязнения.

Большинство из этих типов альтернативных источников энергии и технологий возобновляемых источников энергии не новы. На протяжении веков люди использовали силу проточной воды в реках и ручьях для различных нужд, особенно для сельского хозяйства и транспорта.Водяные колеса и ветряные мельницы использовались на протяжении тысячелетий для измельчения кукурузы или муки, для изготовления хлеба и различных продуктов. Даже пассивная солнечная энергия для обогрева домов и сушки одежды. Хотя некоторые формы этих типов альтернативных источников энергии на самом деле являются усовершенствованием давно существующих технологий, другие являются действительно новыми, например, биоэнергетика и солнечные батареи.

Альтернативные формы энергии

Альтернативные формы энергии

Исследования по изучению альтернативных форм энергии чрезвычайно важны сегодня, учитывая возрастающую роль, которую альтернативные источники энергии должны играть в нашем обществе.

В свою очередь, спрос на альтернативные источники энергии определяется несколькими факторами.

Энергия и выработка электроэнергии из ископаемого топлива привели к высокой концентрации вредных парниковых газов в атмосфере. Но, несмотря на создаваемые пагубные последствия, спрос и цена на ископаемое топливо продолжают неуклонно расти. В то же время мировое предложение этих невозобновляемых ресурсов сокращается. Учитывая все эти причины, нас обоих подталкивают к изучению различных альтернативных форм энергии.

В современном мире термин «альтернативная энергия» обычно относится к источникам энергии, отличным от невозобновляемых ископаемых видов топлива, таких как уголь, сырая нефть и природный газ. В свою очередь, «альтернативная энергия» часто ассоциируется с возобновляемыми источниками энергии, которые зачастую более чистые и экологичные.

Альтернативные формы энергии, доступные сегодня, составляют значительный диапазон, и постоянно открываются новые формы.

В этих источниках энергии обычно используются процессы, обычно происходящие в природе, и поэтому их можно постоянно обновлять за короткий период времени.Эти источники не только сокращают выбросы парниковых газов и загрязняющих веществ, но и помогают нам сохранять природные ресурсы. Узнайте больше о преимуществах возобновляемых источников энергии.

Вот несколько широко известных альтернативных форм энергии.


Солнечная энергия: Солнечная энергия - это энергия солнца. Пока Солнце существует, оно всегда излучает свет, тепло и другие формы радиационной энергии. Таким образом, солнечная энергия часто считается неисчерпаемой.

По данным НАСА, Солнце излучает на Землю около 174 петаватт (Pw) солнечной энергии каждый день. Из этого количества около 30% энергии отражается обратно в космос, в то время как другая большая часть поглощается нашей атмосферой. Лишь около 10% энергии (около 17,4 Pw в день) сохраняется на Земле, но это количество больше, чем удовлетворяет дневную потребность мира в энергии.

Энергия солнечной энергии не только управляет многими важными природными процессами, такими как фотосинтез, но также может быть преобразована в другие формы энергии, такие как электрическая энергия, с помощью солнечных панелей.

Читать статьи по теме:


Энергия ветра: Энергия ветра - еще один из альтернативных видов энергии. Ветер - это движение воздуха в результате неравномерного нагрева земли и ее атмосферы солнцем, а также вращения Земли. Эта энергия ветра, «собранная» ветряными турбинами, может использоваться для выработки электроэнергии. Ветровые турбины в сочетании с сильным, устойчивым ветром могут генерировать электроэнергию экономически эффективным способом без образования загрязняющих веществ.Фактически, энергия ветра становится одной из самых быстрорастущих в мире технологий зеленой энергетики, создавая большое количество рабочих мест в области ветроэнергетики.


Геотермальная энергия: Знаете ли вы, что центр Земли может достигать 12000 градусов по Фаренгейту? Большое количество тепла, удерживаемого под поверхностью Земли - в ее ядре, - может фактически использоваться в качестве источника энергии. Фактически, цель геотермальных систем - использовать это тепло, известное как геотермальная энергия. Геотермальная энергия может использоваться для различных целей, включая производство электроэнергии, обогрев и охлаждение зданий.


Гидроэлектроэнергия: Гидроэнергетика - это энергия, которая возникает за счет силы движения воды, которая течет или падает. В крупных водоемах, таких как реки, гидроэлектростанции или плотины используются для производства электроэнергии из воды в больших масштабах. Гидроэлектростанция обычно строится через большую реку с достаточным количеством воды. Вода, протекающая через плотину, генерирует энергию, которая улавливается и превращается в электричество.Эта энергия называется гидроэлектроэнергией или гидроэлектричеством.


Энергия биомассы: Энергия биомассы - это энергия, полученная из растений и животных материалов, например, растительности и сельскохозяйственных культур, а также органических остатков ферм, бытовых или промышленных отходов.


Энергия океана: Океаны содержат как минимум два типа энергии - механическую энергию приливов и волн, а также тепловую энергию солнечного тепла.

Потенциал альтернативных источников энергии огромен. В связи с возрастающей потребностью в альтернативных формах энергии в мире сегодня мы наблюдаем рост числа компаний, занимающихся альтернативной энергией во всем мире.

Они могут инвестировать в «зеленые» технологии, исследовать и открывать новые формы альтернативной энергии, стремиться повысить эффективность существующих форм возобновляемой энергии, преобразовывать эти альтернативные формы энергии в полезные формы, такие как электричество, и даже производить продукцию (например, солнечные панели ), которые позволяют людям использовать альтернативные источники энергии даже в своих домах или офисах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх