Характеристики энергосберегающих ламп: Энергосберегающие лампы: описание, виды, рейтинг, советы

Содержание

Отличие светодиодных ламп от энергосберегающих

Чем отличается светодиодные лампы от энергосберегающих

Первое отличие светодиодных ламп от энергосберегающих в самом принципе работы. Светодиодное освещение достигается за счет свечения ярких и сверх ярких светодиодов.

Светодиодные или энергосберегающие

Энергосберегающие лампы работают как люминесцентные. Свечение у них возникает при бомбардировке электронов паров ртути, в свою очередь ультрафиолетовое освещение паров ртути вызывает свечение люминофора в уже видимом спектре.

Присутствие паров ртути в энергосберегающих лампах является опасным для здоровья человека в случае поломки колбы лампы. Допустимое количество ртути в воздухе, в этом случае, может превысить 150 раз. Обязательна тщательная уборка осколков лампы и частое проветривание помещения.

Для светодиодных ламп большим плюсом является их безопасность. Они не содержат вредных веществ для человека. Хотя был один случай когда выгорело несколько светодиодов в закрытом корпусе лампы. Лампа источала невыносимый запах. Даже после ремонта этой лампы, запах не выветрился. Источник запаха оставался в лампе. Проветривание лампы в разобранном виде в течение нескольких недель не дало результата, запах по-прежнему был сильным.

Виды светодиодных ламп

Помогла только утилизация рабочей лампы. Но это был единичный случай, который не повлиял на выбор светодиодных ламп. Если сравнивать яркость свечения в люменах, то при одинаковой мощности светодиодных и энергосберегающих ламп, у светодиодных сила светового потока будет на 20% выше.

Для наглядности у энергосберегающей лампы световой поток равен 62,5 лм/Вт (люмен на ватт), а для светодиодных он равен 76,9 лм/Вт. Какие лампочки лучше светодиодные или энергосберегающие по выделению тепла покажет тест. Энергосберегающие лампы могут нагреться до 81,7° C из-за тепла нити накала, светодиодные нагреваются не выше 30° C.

Таким образом у вторых экземпляров пожароопасность значительно ниже. Так как они не имеют нити накала и тонкого стекла колбы то механическая прочность, ударопрочность, вибростойкость у светодиодных ламп значительно выше.

Сравнение мощностей накальных, светодиодных и энергосберегающих ламп

Светодиодные лампы не испытывают проблем при изменении сетевого напряжения в пределах 170 – 270 В, тогда как низкое напряжение питания энергосберегающей лампы не разогревает нить накала, и лампа не загорается, а высокое напряжение сети сокращает срок ее службы. Для диодных ламп можно использовать светодиоды различной цветовой температуры (цвет свечения).

Цвета свечения можно выбирать от ярко белого до цвета кукурузы (желтого). Срок службы этих ламп значительно превышает паспортные данные в 50000 часов. Сравнение светодиодных и энергосберегающих ламп показывает полное преимущество первых в яркости свечения, экономичности, долговечности и механической прочности.

Сравнение годовой экономии электроэнергии для разных типов ламп

Даже при большей стоимость выбор следует остановить на светодиодных экземплярах при их хорошей окупаемости и длительном сроке эксплуатации. Качество этих ламп зависит от производителя. Обычно их не выбрасывают, так как они легко ремонтируются в отличии от энергосберегающих (сгоревший светодиод можно просто закоротить или заменить на другой), что не повлияет на работу лампы. Это еще одно преимущество светодиодных ламп.

Основные характеристики энергосберегающих ламп и их особенности

Сегодня энергосберегающие лампы заменили обычные цокольные лампочки благодаря своему длительному сроку службы, несмотря на высокую стоимость.

В чем же отличия энергосберегающих осветительных элементов от обычной лампочки накаливания? Они состоят из колбы, которая наполняется аргоном и парами ртути и из стартера – пускорегулирующего устройства. Внутренняя поверхность этой покрывают специальным веществом, которое называется люминофор. Это вещество при воздействии с ультрафиолетовым излучением излучает видимый свет. Оттенки люминофора могут быть различными, в результате чего создаются различные цвета светового потока.

Все характеристики энергосберегающих ламп производители обычно указывают на упаковках. Здесь указан ее размер, мощность и цвет потока.

Основные характеристики энергосберегающих ламп

  • тип света
  • мощность
  • величина/форма
  • разновидность цоколя.

Мощность бывает разного диапазона – от 3 до 90 Ватт.

КПД у них обычно очень высокий, благодаря чему светоотдача выходит выше в пять раз по сравнению со стандартными осветительными элементами.

резьбовой цоколь Эдиссона E27
использование энергосберегающих ламп E27

 

Свет может быть холодный (6400К), белый теплый (2700К) или дневной (4200К). Поэтому обращайте внимание при выборе на упаковку, где указаны все параметры. Обычно, чем меньше цветовая температура, тем соответственно спектр более приближен к красному, если же цветовая температура выше – тон смещается к синему.

Величина и форма может быть двух разновидностей: U-образной и спиралеобразной. Если рассматривать их форму с технической стороны, то разницы в них никакой нет. Отличаются они только по величине: спиралеобразные гораздо сложнее в производстве, и соответственно – дороже, U-образные кажутся гораздо массивнее и больше, однако стоимость их гораздо ниже, поскольку они проще в изготовлении.

СОВЕТУЕМ ПРОЧИТАТЬ:

Почему высокая цена цокольного сайдинга не отпугивает клиентов.

О видах цоколей

Цоколь является одной из важных характеристик энергосберегающих ламп. Именно на него нужно обращать внимание при выборе осветительного элемента, так как он должен соответствовать патрону осветительного прибора, который вы выбрали: люстра, лампа, фонарик и т.д. В настоящее время существует много видов и подвидов цоколей для энергосберегающих ламп. Можно выделить 2 основные группы: штырьковые и  резьбовые. Наиболее распространенный — это резьбовой (винтовой) цоколь. Первая буква в маркировке цоколя определяет его тип.  Например, E — резьбовой цоколь Эдисона, G — штырьковой цоколь, R — цоколь с утопленными контактами. Число в маркировке цоколя указывает размер цоколя в мм либо расстояние между контактами, к примеру: E14, E27, GU5.3 , GX5.3, G13. Мы подробнее остановимся на цоколе с маркировкой E —резьбовой цоколь Эдиссона с размерами Е27 и Е14.


Энергосберегающие лампы Е27 по своему размеру сопоставимы с обычной цокольной лампочкой накаливания и представляет собой резьбовое соединение с диаметром около 27 мм..

Энергосберегающие лампы Е14 можно сравнить с цоколями малой и средней величины лампы накаливания.

Выбирая лампочки для дома или для офиса, обращайте внимание на то, чтобы они были в одном световом тоне. Для жилых помещений лучше выбирать теплое свечение и мягкие тона, чтобы их свет не раздражал.

В чем преимущество энергосберегающих ламп Е27?

Энергосберегающие лампы Е27 могут иметь грушевидную форму, в виде спирали. Выбирая ее для светильника, обращайте внимание на мощность, световой поток, размер и цветовую температуру. Потребление электроэнергии зависит от модификации, но обычно в таких моделях оно колеблется от 9 до 12 Вт.

В последнее время их стали часто использовать для дома, поскольку они дают большое количество света даже при самой маленькой мощности. Несмотря на свою высокую стоимость по сравнению с лампами накаливания, они быстро окупаются долговечным и эффективным использованием.

Данный вид лампочек никогда не «прикипит» к патрону благодаря минимальной температуре нагрева ее поверхности.


Где применяются энергосберегающие лампы Е14?

Сегодня их стали часто использовать в бытовом освещении: люстры, бра, потолочные и настенные светильники.

Выделяют два основных производителя осветительных элементов данного вида: Philips и OSRAM. Если рассматривать этих двух производителей, то никаких особых отличий в конструкции и в качестве их продукции нет, в них содержится минимальное количество ртути.
Цоколь энергосберегающей лампы Е14 может быть малой и средней величины и подходит для нестандартных светильников.

Какой бы вид энергосберегающих осветительных элементов Вы ни выбрали, Вы значительно сэкономите электроэнергию, поскольку они очень экономные и при этом они способны отдавать свет в пять раз больше. Мощность 20-ти Вт лампы создает световой поток равный обычной лампе накаливания, мощностью 100 Вт.

Срок службы их гораздо выше по сравнению с обычными, а ресурс ее работы составляет от 5000 до 12 000 часов. Благодаря этому они стали незаменимы в помещениях с высокими потолками, где затруднен процесс их замены.

Таблица ламп энергосберегающих и их цоколи. Как выбрать энергосберегающую лампу? Технические характеристики энергосберегающих ламп

Энергосберегающие лампочки - это продукция, окутанная ореолом тайны. Казалось бы, основное преимущество их использования очевидно даже из названия - покупай да радуйся.

Тем не менее, многие наши соотечественники не спешат обзаводиться «чудо-разработками», желая вначале узнать:

  • каково их устройство;
  • в чем заключается их «бережливость»;
  • не опасны ли они;
  • почему в «немилость» попали такие привычные и «родные» лампы накаливания.

Ряд пользователей смущает также то, что отзывы о работе таких источников света не всегда самые лестные.

Все эти сомнения справедливы и имеют право на существование. Поэтому мы подробно расскажем о преимуществах, недостатках и тонкостях эксплуатации люминесцентных «экономок». А также о том, как правильно выбрать энергосберегающую лампу, если для вас ее плюсы все же перевесят минусы.

Устройство компактных люминесцентных ламп (КЛЛ)

Первые линейные люминесцентные лампы были выпущены в Соединенных Штатах в конце тридцатых годов прошлого столетия. Активно применяться начали в пятидесятых-шестидесятых - они стали успешным решением вопроса освещения на промышленных предприятиях и в административных зданиях. К сожалению, «бытовым прорывом» линейные люминесцентные лампы стать не смогли по вполне очевидным причинам - их размеры уж очень не «домашние».

Поэтому совершенно неудивительным стало стремление производителей существенно уменьшить габариты разработки. Удалась им эта «затея» только в восьмидесятых, после того, как бы созданы новые, более качественные люминофоры. Диаметр трубки уменьшился до 12 миллиметров, а саму ее многократно согнули. Спустя годы специалистам удалось настолько уменьшить массу и размеры люминесцентных ламп, что стали они стали серьезными «конкурентами» традиционным образцам накаливания.

Современная компактная люминесцентная лампа состоит из двух ключевых элементов - изогнутой колбы и цоколя.

В колбе КЛЛ находятся электроды из вольфрама, «покрытые» активирующими веществами (смесью окислов бария, стронция, кальция). Заполнена колба инертным газом с небольшой примесью паров ртути.

Когда на лампу подается напряжение, между электродами (что вполне естественно) возникает заряд, и она зажигается. Но практически все генерируемое ею излучение лежит в ультрафиолетовом диапазоне. Для того, чтобы это излучение «трансформировалось» в видимый для человеческого глаза свет, внутреннюю часть колбы покрывают специальным веществом - люминофором.

Состав люминофора напрямую определяет цветовые характеристики получаемого света, т.е. «качественный люминофор = эффективная лампа».

Интересно! Компактная люминесцентная лампа является абсолютным рекордсменом среди всех источников света по количеству простонародных названий. Как ее только не величают - «кллшка», «энергосберегайка», «экономка»…

Преимущества «экономок» перед лампами накаливания

  1. Первое и главное преимущество компактных люминесцентных ламп - высочайшая светоотдача. Примерно в пять раз большая, чем лампы у накаливания. Если говорить о конкретных цифрах, это значит, что светоотдача лампы накаливания мощностью 100 Вт будет равняться светоотдаче люминесцентного источника света мощностью 20 Вт. Главный козырь такой покупки, как вы уже могли догадаться, кроется в возможности снизить потребление электроэнергии на освещение примерно на 80%. Снижение используемой энергии - это «радость» не только для кошелька, но и для окружающей среды. Уменьшая свой потребительский спрос на оную, мы сокращаем количество вредных газовых выбросов, являющихся «неотъемлемым» побочным продуктом при производстве электроэнергии.

Важно! Во всем цивилизованном мире именно важность сохранения экологии является ключевым мотивирующим фактором к переходу на энергосберегающие источники света.

  1. Классической причиной выхода из строя ламп накаливания является перегорание вольфрамовой спирали. Принцип работы и строение КЛЛ кардинально иные. Это позволяет эксплуатировать их в 6-15 раз дольше. Среднестатистический ресурс работы экономок составляет 6-12 тысяч часов.
  2. Так как в замене КЛЛ нуждаются гораздо реже, чем «лампочки Ильича», их очень удобно использовать в труднодоступных светильниках (к примеру, в квартирах с высокими потолками).
  3. Экономки не только потребляют меньше электрики, но и выделяют меньше тепла. Это позволяет спокойно инсталлировать их в люстрах и светильниках с ограничением по температуре. Теперь можно не беспокоиться, что патрон, элементы отделкии провод «поплывут».
  4. Энергосберегающие лампы позволяют организовать более мягкое и равномерное освещение.

Недостатки энергосберегающих ламп

  1. Заменить одномоментно все обычные лампочки в доме на экономки может быть достаточно затруднительно в финансовом плане. Одна КЛЛ обойдется дороже обычной лампы накаливания в 10-20 раз.
  2. Слишком частые вкл/выкл существенно сокращают жизнь экономки.
  3. Стандартные КЛЛ запрещается использовать в светильниках, которые управляются диммерами (регуляторами света). Для этих целей существуют специальные КЛЛ с регулировкой яркости, но стоит ли говорить, что стоят они на порядок дороже и без того недешевых «рядовых» экономок.
  4. КЛЛ содержат ртуть и прочие токсические вещества - они должны быть утилизированы соответствующим образом; выбрасывать их в

Сравнение энергосберегающих ламп, ламп накаливание и светодиодных ламп

Общая информация об лампах накаливания и энергосберегающих лампах

Современный человек уже не может жить без наличия в его жилище искусственного освещения. Интерьер жилых помещений, офисов и других построек изначально проектируются под дальнейшую установку искусственного света. Человеку в повседневной жизни требуется искусственный свет, которые дают ему различные лампы освещения.
Обычные лампы накаливания применяются в квартирах уже очень давно. Исходя из требуемого качества освещения, подбираются лампочки с различными мощностями – 40 Вт, 60 Вт и 95 Вт. Лампочки в 100 Вт и выше несколько лет назад были запрещены к выпуску т.к. были отнесены к энергоемким осветительным приборам. Обычно лампы накаливания имеют желтый (теплый) цвет при свечении, равный 2200К-3000К.
Тест ламп накаливания дает не очень хорошие результаты. Характеристики КПД в них составляет меньше 30%. Отсюда напрашивается вывод, что большая половина электроэнергии просто расходуется в пустую, в тепловую энергию. Срок работы таких ламп составляет около 1000 часов.
Галогенные лампы имеют КПД меньше 20%. Цветовые характеристики колеблются в пределах 3000К-4500К. Срок службы галогенок несколько больше ламп накаливания. К недостаткам можно отнести высокую температуру разогрева галогенных ламп, чувствительность к скачкам напряжения и непримеримость к загрязнениям. Даже касание стеклянной колбы лампы руками приведет к выходу ее из строя. По этому при монтаже лампы необходимо работать в чистых перчатках или брать лампу в руки, используя чистую тряпочку или другой материал. Чаще всего этот тип ламп используется в быту в точечных светильниках, настольных лампах и в автомобильных осветительных приборах.
Наибольшее распространение на сегодняшний день имеют лампы дневного света. Неоднократный обзор и тест ламп дневного света позволил ученым извлечь максимальную пользу и создать более современные хорошие комплексные люминесцентные лампы (КХЛ), также называемые энергосберегающими. КПД ламп дневного света больше 60%, что является хорошим показателем. Энергопотребление таких ламп в 5 раз меньше, чем ламп накаливания. По цветовой гамме трубочные лампы дневного света делились на ЛБ (лампы белые) и ЛД (лампы дневного) цвета. Долговечность таких ламп составляет около 10000 часов.
На сегодняшний день в нашу жизнь прочно входят светодиодные лампы. КПД таких ламп составляет больше 90%. Потери происходят из за защитной колбы, которая поглащает часть световой энергии. Энергопотребление таких ламп в 7 раз ниже ламп накаливания. Срок службы светодиодных ламп составляет 30000-50000 часов. Такие характеристики позволяют занять светодиодным лампам лидирующее положение. К недостаткам можно отнести их цену.
Большую нишу в линейке осветительных приборов занимают лампы ДРЛ и натриевые лампы. В основном эти лампы применяются в мощных осветительных системах, как прожектора, фонари уличного освещения, освещение промышленных объектов. Много на этих лампах мы останавливаться не будем. По этим лампам можно почитать в статьях «Принцип действия и использование ламп ДРЛ» и «Натриевые лампы«.

Виды цоколей ламп

На сегодняшний день широкое распространение получили следующие виды цоколей:


Е14 — или мини цоколь. Лампы устанавливаются в БРА, люстры и т.п.

Е27 — самый распространенный вид цоколя. Соответственно и применяются во всех видах светильников.

Е40 — Лампы с таким цоколем устанавливаются в прожекторы, осветительные приборы больших размеров, в уличных светильниках. Это лампы ДРЛ, натриевые лампы.


G23 — Такие цоколи применяются для настольных ламп, переносок и т.п.


G9 — То же, что и G23 и в всевозможных подсветках.


GU10 — Точечные светильники — вот основное применение таких цоколей.


GX53 — Точечные светильники.


MR16 — Точечные светильники.

Цветовая характеристика ламп

Для определения цвета излучения лампы был использован способ сравнивания с цветом излучения расплавленного металла. Вспомните, что по мере того, как расплавляется металл, цвет его изменяется от темно-красного до красного, потом до желтого, далее до белого и т.д. В нашем случае температура цветового излучения указывается в Кельвинах (К). Так, например, цветовая температура ламп накаливания 2800К-3000К. Это желтоватый цвет или как мы говорим, теплый цвет. Цветовая температура бытовой восковой свечи меньше, соответственно и цвет от свечи имеет более красный оттенок.

Ниже на рисунке показаны разные виды ламп и их цветовое излучение.

Принципиальные различия между лампами накаливания и энергосберегающими

Неоднократный тест энергосберегающих ламп показал большие плюсы в плане расходования электроэнергии, по сравнению с устаревшими лампочками «Ильича». Принцип работы ламп накаливания известен каждому человеку. Электрический ток нагревает вольфрамовую нить внутри лампы и раскаляет ее до яркого свечения. Это свечение имеет желтый оттенок. А как выглядит изнутри лапочка с энергосберегающими свойствами?
Внутри такой лампы находится специальная колба, которая наполнена парами аргона и ртути. Параллельно размещено пускорегулирующее устройство (ПРУ). Внутренняя поверхность колбы покрыта специальным веществом люминофором. При контакте с ультрафиолетом люминофор излучает энергию в виде света.
Электрический ток, попадая в энергосберегающую лампу, создает электромагнитное излучение, а ртутные пары начинают образовывать излучение ультрафиолета. Далее он проходит сквозь люминофор и создает ощутимое свечение.
Люминофорное покрытие может быть выполнено в различных оттенках, что позволяет получать самый разнообразный цветовой спектр.
Различные типы обоих разновидностей ламп накаливания и энергосберегающих имеют аналогичные конструктивные характеристики. Диаметры цоколей у них бывают под маркировками – Е27 и Е14 в миллиметрах. Это является преимуществом из-за возможности взаимозаменяемости с другими типами ламп.

Все плюсы и минусы энергосберегающих ламп

Обзор положительных сторон данных лампочек:

  1. Экономия электрической энергии. В этом плане энергосберегающие лампы имеют световую отдачу в 5 раз выше по сравнению с лампами накаливания и имеют только положительные отзывы. Световые характеристики лампочки «Ильича» в 100 Вт не отличаются от аналога, в виде энергосберегающей лампы в 20 Вт. Последняя, позволяет сократить расход электроэнергии на 80%, не создавая дискомфорта для человека у него дома. Разница между лампами накаливания и энергосберегающими лампами еще состоит в том, что со временем световой поток у первых значительно ухудшается.
  2. Долговечность. В отличие от традиционных ламп накаливания, энергосберегающие лампы прослужат в разы дольше. Они не имеют, перегорающей со временем, вольфрамовой нити и способны прослужить до 11 раз дольше. Эти виды ламп отлично подходят для использования в труднодоступных местах и в светильниках закрытого типа.
  3. Низкий уровень теплоотдачи. Преимуществом энергосберегающих лампочек перед лампами накаливания является тот факт, что большая часть мощности от электрической энергии преобразуется в световой поток и лампы практически не нагреваются.
  4. Высокая степень светоотдачи. Лампы накаливания способны преобразовывать световой поток исключительно из вольфрамового элемента. Энергосберегающие, в свою очередь преобразовывают мощность в свечение по всей площади. Преимущества такого действия ощутимы для глаза человека, так как поток света и цветопередача в данном случае более комфортны и равномерны на всей площади помещения.
  5. Выбор подходящего цветового решения. Люминофор может иметь самые разные оттенки, поэтому разница в выборе цветов освещения огромна. Стоит отметить, что свет в любом случае будет максимально теплый и комфортный.

Дома рекомендуют использовать более теплые тона для более комфортного состояния человека.

Отрицательные стороны энергосберегающих ламп:

  1. Цена. Самым большим минусом данных ламп по сравнению с лампами накаливания является их более дорогой ценник. Он может быть до 10 раз выше, чем цена на традиционные лампы. Но если правильно рассчитать КПД и срок службы данных ламп, то станет очевидным более выгодное использование с экономической точки зрения этих ламп в течение долгого периода времени.
  2. Опасность для экологии и здоровья человека. Внутри энергосберегающих ламп находится определенная концентрация ртути, что в свою очередь несет опасность для здоровья человека и использовании дома. Также данные лампы очень вредны с точки зрения загрязнения экологии окружающей среды в случае их неправильной утилизации.

Основные показатели энергосберегающих ламп

  1. Показатели мощности. Данные лампы могут иметь различный мощностной диапазон. Он может находиться в пределах – от 3 до 90 Вт. Различие КПД между лампами накаливания и энергосберегающими лампами составляет – 5 раз. Исходя из этого показателя, выбирать данные лампы следует по следующему правилу: разделить мощностные характеристики на цифру 5. Традиционная лампа на 100 Вт аналогична по своим характеристикам современной лампе на 20 Вт.
  2. Цветовые характеристики. Типы и параметры работы современных ламп позволяют получать различную цветовую температуру. По данной характеристике можно выбрать следующие виды теплого цвета, влияющие на эмоциональное настроение человека: теплый белый (2700К), дневной (4200К) и холодный белый (6400К). Что несет в себе это обозначение? Чем ниже тип маркировки, тем цветовая температура и цветопередача стремятся к красному цвету, чем выше – к синему цвету. Перед покупкой данных лапочек, рекомендуется сделать обзор на всю таблицу параметров и провести эксперимент дома. Для каждого человека световой поток и спектр цветов может быть индивидуальными показателями, поэтому выбрать, проанализировав все виды ламп, нужно более соответствующую помещению.
  3. Сравнение по размерам. Современные энергосберегающие лампы производятся в соответствие со всеми нормами и правилами. Они могут иметь U – образную или спиральную форму. Их обзор в сравнение дает следующий результат: они различаются только формой. Спиралевидные лампы незначительно дороже, но и меньше по своим размерам. Какую лампу выбрать для использования дома? Ту, которая подойдет к светильнику или люстре по эстетическим соображениям. Энергосберегающие лампы могут иметь цоколи, аналогичные лампам накаливания и, по этому, могут их заменить без переделки светильников в части патронов.
  4. Разновидности цоколей. Стандартные световые приборы рассчитаны на цоколь с размером Е27, также встречаются и цоколи типа Е14. Зачастую размером Е27 обладают большие лампы и это легко определить визуально. Размером Е14, соответственно лампы среднего и маленького размера.

Весь спектр технических характеристик энергосберегающих ламп наносятся производителем на упаковку.

Светодиодные лампы

Тест светодиодных ламп показывает, что данная разновидность лампочек на сегодняшний день является самой совершенной в области осуществления искусственного освещения. В последнее время развитие технологий сильно возросло и это очень сильно повлияло на снижение цены для производства светодиодной продукции. Эти лампы являются самыми экономичными и имеют самый долгий срок эксплуатации.
Лампы со светодиодами имеют аналогичные технические характеристики, что и лампы накаливания. Отличительной особенностью этих ламп является способность работать от разного напряжения, в пределах – от 12 Вольт до 220 В.

Полезно знать! Сокращенная аббревиатура LED расшифровывается, как «диод со светоизлучением».

Технические данные светодиодных ламп:

  1. Мощностной диапазон (Ватты,W,Watt).
  2. Типы цоколей (Е27,Е14 и другие, указанные выше).
  3. Световые оттенки (теплый (2700К) – холодный (4500К)).
  4. Рабочее напряжение (постоянный ток (12 Вольт) и переменный (220 Вольт).
  5. Сроки эксплуатации (30000-50000 часов и зависят от качества самих светодиодных элементов).

Основные преимущества светодиодов:

  1. Повышенная эффективность. Более высокий уровень светоотдачи относительно потребляемой мощности (130 – 160 лм / вт). Примерно половина современной продукции еще производят по уже устаревшим стандартам и уровень светоотдачи у них равен всего 100 лм / вт.
  2. Способность работать при разной температуре. Диапазон допустимой температуры окружающего воздуха варьируется в пределах – от -60 до +40 градусов Цельсия.
  3. Различное направление светового потока. Равномерный световой поток для стандартных приборов освещения и узконаправленные световые приборы с индивидуальными показателями светового потока, такие как настольные и настенные осветительные приборы.
  4. Большая концентрация светодиодов. Одна лампа может содержать в себе от одного до нескольких десятков светодиодных элементов для более высокого светового потока.
  5. У некоторых ламп присутствует возможность регулировать уровень яркости.

Недостатки светодиодных ламп:

  1. Высокая цена.
  2. Вред светодиодных ламп при расположении лампы ближе 15 см от человека и в некоторых случаях неприятный спектр свечения. Психологи утверждают, что в 80% случаев данные лампы оказывают негативное влияние на человека.
  3. Для стабильной работы и продолжительного срока службы требуется применение дорогих источников питания и систем охлаждения.
  4. Не существует реальных льгот от государства в сфере энергообеспечения.

Заключение

Стоит отметить, что светодиодные лампы являются оптимальным выбором для современного человека, они имеют ряд неоспоримых преимуществ и позволяют значительно сократить денежные траты за электроэнергию. Хотя их цена и выше остальных аналогов, но также и срок службы значительно дольше и энергопотребление меньше. В итоге при длительной эксплуатации светодиодных ламп вы останетесь в плюсе.

Энергосберегающая лампа — Википедия

Материал из Википедии — свободной энциклопедии

Энергоэффективная ла́мпа — электрическая лампа, обладающая существенно большей светоотдачей (соотношением между световым потоком и потребляемой мощностью), например, в сравнении с классическими лампами накаливания. Благодаря этому замена ламп накаливания на энергосберегающие способствует экономии электроэнергии.

Конструкция и характеристики

Часто энергосберегающими называют только компактные люминесцентные лампы, что некорректно в силу того, что энергосберегающие лампы могут иметь другую конструкцию (например, люминесцентные лампы линейного типа с пониженным содержанием ртути и меньшим диаметром трубки), или даже основываться на других физических принципах — таких, как светодиодные лампы, обладающие перед люминесцентными рядом преимуществ: бо́льшая светоотдача, выше механическая прочность из-за отсутствия хрупкой стеклянной колбы и вольфрамовых нитей, долговечность и независимость от частых переключений, более естественный спектр при сопоставимой цене. Образ компактных люминесцентных ламп часто используется в рекламе, призывающей к экономии электроэнергии и энергосбережению, что способствует распространению этого заблуждения. Более современные светодиодные лампы в разы экономичнее компактных люминесцентных.

Характеристика, которая выгодно отличает энергосберегающие лампы от ламп накаливания, заключается в том, что энергосберегающие лампы могут иметь разную цветовую температуру, определяющую цвет лампы. Цветовые температуры энергосберегающих ламп: 2700 К — Мягкий белый свет, 4200 К — Дневной свет, 6400 К — Холодный белый свет (цветовая температура измеряется градусами по шкале Кельвина). Чем ниже цветовая температура, тем ближе цвет к красному, чем выше — тем ближе к синему. Таким образом, потребитель получает возможность обогатить цветовую гамму помещения.

Опасность для жизни и последствия для здоровья

Отравление парами ртути

Люминесцентные лампы содержат в своём составе в небольшом количестве пары ртути, в связи с чем их нельзя выбрасывать как обычный бытовой мусор, а требуется сдавать на утилизацию в специализированные организации. 24 мая 2014 года, в Москве парами ртути из разбившихся энергосберегающих ламп отравилось сразу 15 рабочих[1][2][3].

Опасно не только острое отравление парами ртути, как правило, заканчивающееся смертью, но и долговременное хроническое отравление малыми дозами паров, вызывающее неврологические заболевания (меркуриализм, «ртутный тремор»), а также длительное воздействие сверхмалых доз (микромеркуриализм).

Ультрафиолетовое излучение люминесцентных ламп

При работе люминесцентных ламп небольшое количество ультрафиолетового излучения выходит наружу лампы через стеклянную колбу, что может потенциально представлять опасность для людей с кожей, слишком чувствительной к этому излучению. Ультрафиолетовое излучение может вызывать появление кожных мутаций[4].

Наиболее опасным является воздействие УФ-излучения на роговицу и сетчатку глаза. Поэтому энергосберегающие лампы не рекомендуется располагать ближе 30 см от глаз (ночники, настольные лампы, освещение жилых помещений)[5].

Полосатый спектр люминесцентных и светодиодных ламп

Энергосберегающие лампы обладают выраженными пиками на отдельных участках спектра. На некоторых же участках излучение может отсутствовать (провал в области фиолетовых и синих лучей есть и у ламп накаливания). В связи с неблагоприятным воздействием прерывистого спектра на сетчатку глаза и нервную систему человека (подавление продукции мелатонина), не рекомендуется применение светодиодных ламп в детских и школьных учреждениях, палатах интенсивной терапии, кабинах машинистов[6][7][8][9].

Стробоскопический эффект

Люминесцентная лампа в сети переменного тока частотой 50 Гц 100 раз в секунду изменяет интенсивность свечения. Светодиодные лампы при импульсном питании также светят прерывисто. Вспышки негативно влияют на зрение, могут вызывать приступы эпилепсии и искажают картину движения предметов (создавая, например, иллюзию отсутствия вращения), что может привести к получению травм[5][4]. Дешёвые светодиодные лампы также могут обладать стробоскопическим эффектом. Эффект можно легко обнаружить быстро проведя взгляд мимо включённой лампы.

Примечания

Ссылки


3. Как работают люминесцентные лампы?

3.4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть - в какие электроны поднимаются на более высокие уровни энергии, а затем отступать, излучая на двух линиях УФ-излучения (254 нм и 185 нм). Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран так, чтобы излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть с помощью ударной ионизации. Эта ионизация может происходить только в исправных лампах.Следовательно, вредное воздействие на здоровье от этого процесса ионизации невозможны. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

Электрические аспекты эксплуатации

Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия. В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны разные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где электрическую схему нельзя заменить перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих эффекты, как указано выше.

ЭМП

Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц - вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.г. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

Мерцание

Все лампы будут различать силу света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.За лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не на частоте 50 Гц (Seitz et al.2006). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и "немерцающие" люминесцентные источники света (Хазова и О'Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях приводить к мерцанию частот, либо только в часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специального покрытия стекло и часто продаются с атрибутом «теплый» или "Холодные" или, точнее, по их цветовой температуре для профессиональные световые приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. свет, чем лампы накаливания.На международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, защищенными от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити и поглощение стекла. Несколько КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г. ).

Энергосберегающие лампы

Энергосберегающие лампы содержат ртуть и перерабатываемые металлы. По этой причине их нельзя выбрасывать в мешок для мусора вместе с бытовым мусором. Их можно бесплатно вернуть в местах продажи или в пунктах выдачи.

Энергосберегающая лампа состоит из компактной газонаполненной люминесцентной лампы и электронного балласта.Энергосберегающие лампы также известны как компактные люминесцентные лампы или лампы с низким энергопотреблением.

Экологическая оценка

Энергосберегающие лампы содержат небольшие количества ртути (предел: 3,5 мг на лампу), а также металлы и стекло. По этой причине они собираются отдельно и утилизируются экологически безопасным способом.

Если энергосберегающая лампа перерабатывается, а не сжигается в установке для сжигания твердых бытовых отходов, загрязнение окружающей среды снижается примерно на 15% в соответствии с оценкой жизненного цикла окружающей среды, проведенной Empa, Швейцарскими федеральными лабораториями материаловедения и технологий. Кроме того, металла и стекла из энергосберегающих ламп могут быть повторно захвачены .

Отдельный сбор

На энергосберегающие лампы распространяются положения Постановления от 14 января 1998 г. о возврате, приеме и утилизации электрического и электронного оборудования (ORDEE). ORDEE требует от потребителя вернуть использованных энергосберегающих ламп дилеру или в пункт приема (обязательство по возврату). Дилеры, продающие энергосберегающие лампы, обязаны бесплатно забрать их обратно и передать на установку по переработке.

Утилизация / вторичная переработка

Пока невозможно дать надежные данные об эффективном уровне сбора энергосберегающих ламп, потому что большинство ламп все еще используются, и их технический срок службы длится еще далеко.

При переработке энергосберегающих ламп ртуть удаляется и, в зависимости от конкретного процесса, либо повторно улавливается, либо хранится в нерастворимой форме. Металлы встроенных электронных балластов (например, медь) и стекло перерабатываются.

При неправильной утилизации энергосберегающих ламп в мешок для бытовых отходов они попадают в мусоросжигательную печь для твердых бытовых отходов. Многоступенчатая очистка дымовых газов в мусоросжигательных печах предотвращает значительное загрязнение окружающей среды.

С другой стороны, неправильная утилизация энергосберегающих ламп с бытовыми отходами увеличивает эксплуатационные расходы на очистку дымовых газов. Также из энергосберегающих ламп не восстанавливается сырье - металлы и стекло.

Финансирование

Швейцарский фонд вторичной переработки освещения (SLRS) на добровольной основе организует сбор и экологически безопасную утилизацию энергосберегающих ламп. Это финансируется за счет предоплаченных сборов за переработку , которые взимаются при импорте и продаже энергосберегающих ламп.

Меры, которые необходимо предпринять

В будущем необходимо обеспечить, чтобы использованные энергосберегающие лампы правильно утилизировались или перерабатывались. Поэтому очень важно, чтобы по этому поводу была доступна самая свежая информация.

Прочие ламповые технологии - характеристики

Для светодиодных ламп см. Светодиодное освещение.

Лампы накаливания

Лампы накаливания с прямым питанием

Из-за очень высокой температуры нити накала во время работы (до 2500 ° C) ее сопротивление сильно варьируется в зависимости от того, включена лампа или нет. Из-за низкого хладостойкости при зажигании возникает пик тока, который может в 10-15 раз превышать номинальный ток в течение нескольких миллисекунд или даже нескольких миллисекунд.

Это ограничение влияет как на обычные лампы, так и на галогенные лампы: оно сокращает максимальное количество ламп, которые могут получать питание от таких устройств, как переключатели дистанционного управления, модульные контакторы и реле для шинопровода.

  • Некоторые галогенные лампы малой мощности питаются от ПЗВ 12 или 24 В через трансформатор или электронный преобразователь. В трансформаторе явление намагничивания сочетается с явлением изменения сопротивления нити при включении.Пусковой ток может в течение нескольких миллисекунд превышать номинальный ток в 50–75 раз. Использование диммерных переключателей, расположенных выше по потоку, значительно снижает это ограничение.
  • Электронные преобразователи с такой же номинальной мощностью дороже, чем решения с трансформатором. Этот коммерческий недостаток компенсируется большей простотой установки, так как их низкое тепловыделение означает, что они могут быть закреплены на легковоспламеняющейся опоре. Более того, они обычно имеют встроенную термозащиту.

Новые галогенные лампы ELV теперь доступны с трансформатором, встроенным в их цоколь. Они могут питаться напрямую от сети низкого напряжения и могут заменять обычные лампы без какой-либо специальной адаптации.

Регулировка яркости для ламп накаливания

Это можно получить, изменяя напряжение, подаваемое на лампу.

Это изменение напряжения обычно выполняется таким устройством, как симисторный диммерный переключатель, путем изменения его угла включения в период линейного напряжения.Форма волны напряжения, приложенного к лампе, показана на рис. N57a. Этот метод, известный как «управление включением», подходит для подачи питания на резистивные или индуктивные цепи.

Другая технология, подходящая для питания емкостных цепей, была разработана с использованием электронных компонентов MOS или IGBT. Этот метод изменяет напряжение, блокируя ток до конца полупериода (см. рис. N57b) и известен как «управление отсечкой».

Рис. N57 - Форма напряжения, подаваемого светорегулятором при 50% максимального напряжения с помощью следующих методов:

Постепенное включение лампы также может уменьшить или даже устранить пик тока при зажигании.

Поскольку ток лампы искажается электронным переключателем, возникают гармонические токи. Порядок гармоник 3 -го порядка является преобладающим, а процентное значение гармонического тока 3 -го порядка , относящееся к максимальному току основной гармоники (при максимальной мощности), представлено на рисунке Рисунок N58.

Рис. N58 - Процент тока 3-й гармоники как функция мощности, подаваемой на лампу накаливания с помощью электронного регулятора освещенности

Обратите внимание, что на практике мощность, подаваемая на лампу переключателем диммера, может изменяться только в диапазоне от 15 до 85% максимальной мощности лампы.

В соответствии со стандартом IEC 61000-3-2, устанавливающим пределы излучения гармоник для электрических или электронных систем с током ≤ 16 A, применяются следующие меры:

  • Независимые диммеры для ламп накаливания с номинальной мощностью менее или равной 1 кВт, ограничения не применяются
  • В противном случае или для осветительного оборудования накаливания со встроенным диммером или диммером, встроенным в кожух, максимально допустимый гармонический ток 3 rd равен 2.30 A

Люминесцентные и газоразрядные лампы с магнитным балластом

Люминесцентные лампы и газоразрядные лампы требуют ограничения силы дуги, и эту функцию выполняет дроссель (или магнитный балласт), установленный последовательно с самой лампой (см. Рис. N59).

Рис. N59 - Магнитные балласты

Эта конструкция чаще всего используется в домашних условиях с ограниченным количеством трубок. К переключателям не применяется никаких особых ограничений.

Диммерные переключатели несовместимы с магнитными балластами: снятие напряжения на часть периода прерывает разряд и полностью гасит лампу.

Стартер выполняет двойную функцию: предварительно нагревает электроды трубки и затем генерирует перенапряжение для зажигания трубки. Это перенапряжение возникает в результате размыкания контакта (контролируемого термовыключателем), который прерывает ток, циркулирующий в магнитном балласте.

Во время работы стартера (ок.1 с), ток, потребляемый светильником, примерно в два раза превышает номинальный ток.

Поскольку ток, потребляемый сборкой трубки и балласта, является по существу индуктивным, коэффициент мощности очень низкий (в среднем от 0,4 до 0,5). В установках, состоящих из большого количества трубок, необходимо предусмотреть компенсацию для улучшения коэффициента мощности. двойная серия, также называемая «дуэт», и области их применения

Компенсационные конденсаторы рассчитаны таким образом, чтобы общий коэффициент мощности был больше 0.85. В наиболее распространенном случае параллельной компенсации ее емкость составляет в среднем 1 мкФ на 10 Вт активной мощности для любого типа лампы. Однако эта компенсация несовместима с переключателями диммера.

Ограничения, влияющие на компенсацию

Схема параллельной компенсации создает ограничения на зажигание лампы. Поскольку конденсатор изначально разряжен, включение вызывает перегрузку по току. Также возникает перенапряжение из-за колебаний в цепи, состоящей из конденсатора и индуктивности источника питания.

Следующий пример может быть использован для определения порядков величины.

Предполагая сборку из 50 люминесцентных ламп по 36 Вт каждая:

  • Полная активная мощность: 1800 Вт
  • Полная мощность: 2 кВА
  • Полный действующий ток: 9 А
  • Пиковый ток: 13 А

С:

  • Общая емкость: C = 175 мкФ
  • Линейная индуктивность (соответствует току короткого замыкания 5 кА): L = 150 мкГн

Максимальный пиковый ток при включении равен:

Ic = VmaxcL = 2302175 × 10−6150 × 10−6 = 350A {\ displaystyle Ic = V_ {max} {\ sqrt {\ frac {c} {L}}} = 230 {\ sqrt {2}} { \ sqrt {\ frac {175 \ times 10 ^ {- 6}} {150 \ times 10 ^ {- 6}}}} = 350A}

Следовательно, теоретический пиковый ток при включении может достигать 27 раз в пикового тока во время нормальной работы.

Форма напряжения и тока при зажигании приведена на рисунке Рисунок N60 для включения переключателя при пике напряжения сети.

Рис. N61 - Напряжение питания при включении и пусковой ток

Следовательно, существует риск контактной сварки в электромеханических устройствах управления (дистанционный переключатель, контактор, автоматический выключатель) или разрушения твердотельных переключателей с полупроводниками.

В действительности ограничения обычно менее жесткие из-за импеданса кабелей.

Групповое зажигание люминесцентных ламп предполагает одно конкретное ограничение. Когда группа ламп уже включена, компенсационные конденсаторы в этих лампах, которые уже находятся под напряжением, участвуют в пусковом токе в момент зажигания второй группы ламп: они «усиливают» пик тока в контрольном переключателе в точке момент возгорания второй группы.

Таблица в Рисунок N62, полученная в результате измерений, указывает величину первого пика тока для различных значений предполагаемого тока короткого замыкания Isc.Видно, что пик тока можно умножить на 2 или 3, в зависимости от количества трубок, уже используемых на момент подключения последней группы трубок.

Рис. N62 - Величина пика тока в контрольном выключателе момента зажигания второй группы ламп

Количество уже используемых трубок Количество подключенных трубок Пик пускового тока (A)
Isc = 1,500 А Isc = 3000 А Isc = 6000 А
0 14 233 250 320
14 14 558 556 575
28 14 608 607 624
42 14 618 616 632

Тем не менее, рекомендуется последовательное зажигание каждой группы ламп, чтобы уменьшить пик тока в главном выключателе.

Самые последние магнитные балласты известны как «малопотери». Магнитная цепь была оптимизирована, но принцип работы остался прежним. Это новое поколение балластов находит широкое распространение под влиянием новых нормативных требований (Европейская директива, Закон об энергетической политике - США).

В этих условиях, вероятно, увеличится использование электронных балластов в ущерб магнитным балластам.

Люминесцентные и газоразрядные лампы с ЭПРА

Электронные балласты используются в качестве замены магнитных балластов для питания люминесцентных ламп (включая компактные люминесцентные лампы) и газоразрядных ламп.Они также выполняют функцию «стартера» и не нуждаются в компенсации.

Принцип работы электронного балласта (см. Рис. N63) заключается в подаче дуги лампы через электронное устройство, которое генерирует переменное напряжение прямоугольной формы с частотой от 20 до 60 кГц.

Рис. N63 - Электронный балласт

Подача на дугу высокочастотного напряжения может полностью устранить явление мерцания и стробоскопические эффекты. Электронный балласт абсолютно бесшумный.

Во время периода предварительного нагрева газоразрядной лампы этот балласт подает на лампу возрастающее напряжение, создавая почти постоянный ток. В установившемся режиме он регулирует напряжение, подаваемое на лампу, независимо от колебаний сетевого напряжения.

Поскольку дуга подается в условиях оптимального напряжения, это приводит к экономии энергии от 5 до 10% и увеличению срока службы лампы. Кроме того, КПД электронного балласта может превышать 93%, тогда как средний КПД магнитного устройства составляет всего 85%.

Коэффициент мощности высокий (> 0,9).

Электронный балласт также используется для функции затемнения света. Фактически, изменение частоты изменяет величину тока в дуге и, следовательно, силу света.

Пусковой ток

Основным ограничением, которое электронные балласты вносят в сетевое питание, является высокий пусковой ток при включении, связанный с начальной нагрузкой сглаживающих конденсаторов (см. Рис. N64).

Рис.N64 - Порядки максимальных значений пускового тока в зависимости от используемых технологий

Технологии Макс. Пусковой ток Продолжительность
Выпрямитель с PFC от 30 до 100 дюймов ≤ 1 мс
Выпрямитель с дросселем от 10 до 30 дюймов ≤ 5 мс
Магнитный балласт ≤ 13 дюймов от 5 до 10 мс

В действительности, из-за импеданса проводки, пусковые токи для сборки ламп намного ниже этих значений, порядка от 5 до 10 In в течение менее 5 мс.В отличие от магнитных балластов, этот бросок тока не сопровождается перенапряжением.

Гармонические токи

Для балластов, связанных с мощными газоразрядными лампами, ток, потребляемый от сети, имеет низкий общий коэффициент гармонических искажений (<20% в целом и <10% для самых сложных устройств).

И наоборот, устройства, связанные с лампами малой мощности, в частности компактные люминесцентные лампы, потребляют очень искаженный ток (см. Рис. N65).Общее гармоническое искажение может достигать 150%. В этих условиях среднеквадратичный ток, потребляемый от сети, в 1,8 раза превышает ток, соответствующий активной мощности лампы, что соответствует коэффициенту мощности 0,55.

Рис. N65 - Форма тока, потребляемого компактной люминесцентной лампой

Чтобы сбалансировать нагрузку между различными фазами, цепи освещения обычно подключаются между фазами и нейтралью сбалансированным образом. В этих условиях высокий уровень третьей гармоники и гармоник, кратных 3, может вызвать перегрузку нейтрального проводника.Наименее благоприятная ситуация приводит к нейтральному току, который может в 3 {\ displaystyle {\ sqrt {3}}} раз превышать ток в каждой фазе.

Пределы излучения гармоник для электрических или электронных систем установлены стандартом IEC 61000-3-2. Для упрощения ограничения для осветительного оборудования приведены здесь только для гармоник порядка 3 и 5, которые являются наиболее важными (см. Рис. N66).

Рис. N66 - Максимально допустимый гармонический ток

Гармонический порядок Активная входная мощность> 25 Вт Активная входная мощность ≤ 25 Вт Применяется один из двух наборов ограничений:
% от основного тока % от основного тока % Гармонический ток относительно активной мощности
3 30 86 3.4 мА / Вт
5 10 61 1,9 мА / Вт

Токи утечки

У электронных балластов обычно есть конденсаторы, помещенные между проводниками источника питания и землей. Эти помехоподавляющие конденсаторы отвечают за циркуляцию постоянного тока утечки порядка 0,5–1 мА на балласт. Следовательно, это приводит к ограничению количества балластов, которые могут быть запитаны дифференциальным защитным устройством остаточного тока (УЗО).

При включении начальная нагрузка этих конденсаторов может также вызвать циркуляцию пика тока, величина которого может достигать нескольких ампер в течение 10 мкс. Этот пик тока может вызвать нежелательное отключение неподходящих устройств.

Высокочастотное излучение

Электронные балласты отвечают за высокочастотные наведенные и излучаемые излучения.

Очень крутые нарастающие фронты выходных проводников балласта вызывают циркуляцию импульсов тока в паразитных емкостях относительно земли.В результате в заземляющем проводе и проводниках питания циркулируют блуждающие токи. Из-за высокой частоты этих токов возникает также электромагнитное излучение. Чтобы ограничить эти высокочастотные излучения, лампу следует размещать в непосредственной близости от балласта, тем самым уменьшая длину наиболее излучающих проводов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх