Коэффициент теплопроводности строительных материалов таблица: Быстрый поиск теплопроводности строительных и отделочных материалов. Полная таблица

Содержание

Быстрый поиск теплопроводности строительных и отделочных материалов. Полная таблица

В физике теплопроводностью принято называть способность молекул переносить энергию от нагретых участков вещества к холодным. Коэффициент обозначается греческой буквой λ (лямбда) и выражается в Вт/(м·K) или Ватт/(метр·градус Кельвина).

Чем меньше цифра, тем большей термической защитой обладают строительные и отделочные материалы. Расскажем о том, от чего зависит величина, куда уходит теплый воздух, а также дадим полную таблицу значений по группам.

Основные данные для статьи мы будем брать из двух нормативных документов: СНиП 23-02-2003 и СП 50.13330.2012 «Тепловая защита зданий».

От чего зависит проводимость тепла

Теплопроводность напрямую зависит от следующих факторов:

  • Плотность. Чем ближе молекулы вещества находятся друг к другу, тем быстрее идет обмен энергией. Значит,

    повышение плотности ведет к снижению теплозащиты.

  • Структура. В пористых материалах содержатся капсулы с воздухом, который существенно затормаживает процесс улетучивания тепла. Пористый — значит более теплый.

  • Влажность. У воды показатель λ при температуре +20°C в 23 раза больше, чем у воздуха. Поэтому промокший кирпич остывает быстрее.

На основе уровня влажности мы вычислим условия эксплуатации, необходимые для уточнения поиска значений теплопроводности в таблице.

Условия эксплуатации

Определение условий эксплуатации поможет получить объективное значение теплопроводности (параметры «А» и «Б»). Для этого нужно пройти 3 простых этапа.

Этап 1

. Найдем влажностный режим помещения исходя из таблицы:

Режим Влажность внутреннего воздуха, %, при температуре, °С
До +12 °C От +12 до +24 °C Больше +24 °C
Сухой До 60 % До 50 % До 40 %
Нормальный От 60 до 75 % От 50 до 60 % От 40 до 50 %
Влажный Свыше 75 % От 60 до 75 % От 50 до 60 %
Мокрый - Свыше 75 % Свыше 60 %

Этап 2. Определим зону влажности

в зависимости от региона. Характеристики указаны цифрами от 1 до 3. Их можно посмотреть на картинке подзаголовка или увидеть на более детальной карте по ссылке: большая карта.

Этап 3. Соотнесем параметры, полученные на первых двух этапах и получим нужную букву условий эксплуатации:

Влажностный режим помещений зданий (этап 1) Условия эксплуатации А и Б в зоне влажности (по карте этапа 2)
Сухой Нормальной Влажной
Сухой А А Б
Нормальный А Б Б
Влажный или мокрый Б Б Б

Пример: пусть в нашем помещении при комнатной температуре от +12 до +

24 °C влажность не поднимается выше 50 %, значит режим — сухой. Дом расположен в Твери — 2 зона влажности (нормальная). Тогда условия эксплуатации получаются с обозначением «А». На них и будем обращать внимание.

Теплоизоляционные материалы

Далее базовую теплопроводность будем указывать, как λ0, та же величина с обозначением λ (А) — параметр для обычных условий эксплуатации, а λ (Б) — маркер повышенной влажности. Плотность — ρ0, паропроницаемость — μ.

Мы заменили Вт/(м·K) на Вт/(м·°C), поскольку эти системы отсчета тождественны для определения уровня переноса энергии. Величина градуса одинакова для обеих шкал. Градус здесь — единица температурного перепада (градиента, приращения).

Теплоизоляционные материалы — основной барьер на пути холодного воздуха.

Таблица коэффициентов для них такова:

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Плиты из пенополистирола До 10 0,049 0,052 0,059 0,05
2 То же 10-12 0,041 0,044 0,050 0,05
3 " 12-14 0,040 0,043 0,049 0,05
4 "
14-15
0,039 0,042 0,048 0,05
5 " 15-17 0,038 0,041 0,047 0,05
6 " 17-20 0,037 0,040 0,046 0,05
7 " 20-25 0,036 0,038 0,044 0,05
8 " 25-30 0,036 0,038 0,044 0,05
9 " 30-35 0,037 0,040 0,046 0,05
10 " 35-38 0,037 0,040 0,046 0,05
11 Плиты из пенополистирола с графитовыми добавками 15-20 0,033 0,035 0,040 0,05
12 То же 20-25 0,032 0,034 0,039 0,05
13 Экструдированный пенополистирол 25-33 0,029 0,030 0,031 0,005
14 То же 35-45 0,030 0,031 0,032 0,005
15 Пенополиуретан 80 0,041 0,042 0,05 0,05
16 То же 60 0,035 0,036 0,041 0,05
17 " 40 0,029 0,031 0,04 0,05
18 Плиты из резольнофенол-формальдегидного пенопласта 80 0,044 0,051 0,071 0,23
19 То же 50 0,041 0,045 0,064 0,23
20 Перлитопластбетон 200 0,041 0,052 0,06 0,008
21 То же 100 0,035 0,041 0,05 0,008
22 Перлитофосфогелевые изделия 300 0,076 0,08 0,12 0,2
23 То же
200
0,064 0,07 0,09 0,23
24 Теплоизоляционные изделия из вспененного синтетического каучука 60-95 0,034 0,04 0,054 0,003
25 Плиты минераловатные из каменного волокна (минвата) 180 0,038 0,045 0,048 0,3
26 То же 40-175 0,037 0,043 0,046 0,31
27 " 80-125 0,036 0,042 0,045
0,32
28 " 40-60 0,035 0,041 0,044 0,35
29 " 25-50 0,036 0,042 0,045 0,37
30 Плиты из стеклянного штапельного волокна 85 0,044 0,046 0,05 0,5
31 То же 75 0,04 0,042 0,047 0,5
32 " 60 0,038 0,04 0,045 0,51
33 " 45 0,039 0,041 0,045 0,51
34 " 35 0,039 0,041 0,046 0,52
35 " 30 0,04 0,042 0,046 0,52
36 " 20 0,04 0,043 0,048 0,53
37 " 17 0,044 0,047 0,053 0,54
38 " 15 0,046 0,049 0,055 0,55
39 Плиты древесно-волокнистые и древесно-стружечные 1000 0,15 0,23 0,29 0,12
40 То же 800 0,13 0,19 0,23 0,12
41 " 600 0,11 0,13 0,16 0,13
42 " 400 0,08 0,11 0,13 0,19
43 Плиты древесно-волокнистые и древесно-стружечные 200 0,06 0,07 0,08 0,24
44 Плиты фибролитовые и арболит на портландцементе 500 0,095 0,15 0,19 0,11
45 То же 450 0,09 0,135 0,17 0,11
46 " 400 0,08 0,13 0,16 0,26
47 Плиты камышитовые 300 0,07 0,09 0,14 0,45
48 То же 200 0,06 0,07 0,09 0,49
49 Плиты торфяные теплоизоляционные 300 0,064 0,07 0,08 0,19
50 То же 200 0,052 0,06 0,064 0,49
51 Пакля 150 0,05 0,06 0,07 0,49
52 Плиты из гипса 1350 0,35 0,50 0,56 0,098
53 То же 1100 0,23 0,35 0,41 0,11
54 Листы гипсовые обшивочные (сухая штукатурка) 1050 0,15 0,34 0,36 0,075
55 То же 800 0,15 0,19 0,21 0,075
56 Изделия из вспученного перлита на битумном связующем 300 0,087 0,09 0,099 0,04
57 То же 250 0,082 0,085 0,099 0,04
58 " 225 0,079 0,082 0,094 0,04
59 " 200 0,076 0,078 0,09 0,04

Засыпки

Сыпучие материалы применяются в строительстве для обустройства оснований и служат компонентами для цементобетонных смесей. Их коэффициенты теплопроводности указаны в таблице:

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ, Вт/(м·°С) μ, мг/(м·ч·Па)
1 Гравий керамзитовый 600 0,14 0,17 0,19 0,23
2 То же 500 0,14 0,15 0,165 0,23
3 " 450 0,13 0,14 0,155 0,235
4 Гравий керамзитовый 400 0,12 0,13 0,145 0,24
5 То же 350 0,115 0,125 0,14 0,245
6 " 300 0,108 0,12 0,13 0,25
7 " 250 0,099 0,11 0,12 0,26
8 " 200 0,090 0,10 0,11 0,27
9 Гравий шунгизитовый (ГОСТ 9757) 700 0,16 0,18 0,21 0,21
10 То же 600 0,13 0,16 0,19 0,22
11 " 500 0,12 0,15 0,175 0,22
12 " 450 0,11 0,14 0,16 0,22
13 " 400 0,11 0,13 0,15 0,23
14 Щебень шлакопемзовый и аглопоритовый (ГОСТ 9757) 800 0,18 0,21 0,26 0,22
15 То же 700 0,16 0,19 0,23 0,23
16 " 600 0,15 0,18 0,21 0,24
17 " 500 0,14 0,16 0,19 0,25
18 " 450 0,13 0,15 0,17 0,255
19 " 400 0,122 0,14 0,16 0,26
20 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820) 700 0,14 0,17 0,19 0,22
21 То же 600 0,13 0,16 0,18 0,235
22 " 500 0,12 0,14 0,15 0,24
23 " 400 0,10 0,13 0,14 0,245
24 Щебень и песок из перлита вспученного (ГОСТ 10832) 500 0,09 0,1 0,11 0,26
25 То же 400 0,076 0,087 0,095 0,3
26 " 350 0,07 0,081 0,085 0,3
27 " 300 0,064 0,076 0,08 0,34
28 Вермикулит вспученный (ГОСТ 12865) 200 0,065 0,08 0,095 0,23
29 То же 150 0,060 0,074 0,098 0,26
30 " 100 0,055 0,067 0,08 0,3
31 Песок для строительных работ (ГОСТ 8736) 1600 0,35 0,47 0,58 0,17

Бетоны

Изделия из бетона с добавлением цемента служат основой при строительстве домов. Опишем в таблице их теплопроводность: 

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Туфобетон 1800 0,64 0,87 0,99 0,09
2 То же 1600 0,52 0,7 0,81 0,11
3 " 1400 0,41 0,52 0,58 0,11
4 " 1200 0,32 0,41 0,47 0,12
5 Бетон на литоидной пемзе 1600 0,52 0,62 0,68 0,075
6 То же 1400 0,42 0,49 0,54 0,083
7 " 1200 0,30 0,4 0,43 0,098
8 " 1000 0,22 0,3 0,34 0,11
9 " 800 0,19 0,22 0,26 0,12
10 Бетон на вулканическом шлаке 1600 0,52 0,64 0,7 0,075
11 То же 1400 0,41 0,52 0,58 0,083
12 " 1200 0,33 0,41 0,47 0,09
13 " 1000 0,24 0,29 0,35 0,098
14 " 800 0,20 0,23 0,29 0,11
Бетоны на искусственных пористых заполнителях
1 Керамзитобетон на керамзитовом песке 1800 0,66 0,80 0,92 0,09
2 То же 1600 0,58 0,67 0,79 0,09
3 " 1400 0,47 0,56 0,65 0,098
4 " 1200 0,36 0,44 0,52 0,11
5 " 1000 0,27 0,33 0,41 0,14
6 " 800 0,21 0,24 0,31 0,19
7 " 600 0,16 0,2 0,26 0,26
8 " 500 0,14 0,17 0,23 0,3
9 Керамзитобетон на кварцевом песке с умеренной (до 12 %) поризацией 1200 0,41 0,52 0,58 0,075
10 То же 1000 0,33 0,41 0,47 0,075
11 " 800 0,23 0,29 0,35 0,075
12 Керамзитобетон на перлитовом песке 1000 0,28 0,35 0,41 0,15
13 То же 800 0,22 0,29 0,35 0,17
14 Керамзитобетон беспесчаный 700 0,135 0,145 0,155 0,145
15 То же 600 0,130 0,140 0,150 0,155
16 " 500 0,120 0,130 0,140 0,165
17 " 400 0,105 0,115 0,125 0,175
18 " 300 0,095 0,105 0,110 0,195
19 Шунгизитобетон 1400 0,49 0,56 0,64 0,098
20 То же 1200 0,36 0,44 0,5 0,11
21 " 1000 0,27 0,33 0,38 0,14
22 Перлитобетон 1200 0,29 0,44 0,5 0,15
23 То же 1000 0,22 0,33 0,38 0,19
24 " 800 0,16 0,27 0,33 0,26
25 Перлитобетон 600 0,12 0,19 0,23 0,3
26 Бетон на шлакопемзовом щебне 1800 0,52 0,63 0,76 0,075
27 То же 1600 0,41 0,52 0,63 0,09
28 " 1400 0,35 0,44 0,52 0,098
29 " 1200 0,29 0,37 0,44 0,11
30 " 1000 0,23 0,31 0,37 0,11
31 Бетон на остеклованном шлаковом гравии 1800 0,46 0,56 0,67 0,08
32 То же 1600 0,37 0,46 0,55 0,085
33 " 1400 0,31 0,38 0,46 0,09
34 " 1200 0,26 0,32 0,39 0,10
35 " 1000 0,21 0,27 0,33 0,11
36 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках 1800 0,58 0,7 0,81 0,083
37 То же 1600 0,47 0,58 0,64 0,09
38 " 1400 0,41 0,52 0,58 0,098
39 " 1200 0,36 0,49 0,52 0,11
40 Аглопоритобетон и бетоны на заполнителях из топливных шлаков 1800 0,7 0,85 0,93 0,075
41 То же 1600 0,58 0,72 0,78 0,083
42 " 1400 0,47 0,59 0,65 0,09
43 " 1200 0,35 0,48 0,54 0,11
44 " 1000 0,29 0,38 0,44 0,14
45 Бетон на зольном обжиговом и безобжиговом гравии 1400 0,47 0,52 0,58 0,09
46 То же 1200 0,35 0,41 0,47 0,11
47 " 1000 0,24 0,3 0,35 0,12
48 Вермикулитобетон 800 0,21 0,23 0,26 -
49 То же 600 0,14 0,16 0,17 0,15
50 " 400 0,09 0,11 0,13 0,19
51 " 300 0,08 0,09 0,11 0,23
Бетоны особо легкие на пористых заполнителях и ячеистые
1 Полистиролбетон на портландцементе (ГОСТ Р 51263) 600 0,145 0,175 0,20 0,068
2 То же 500 0,125 0,14 0,16 0,075
3 " 400 0,105 0,12 0,135 0,085
4 " 350 0,095 0,11 0,12 0,09
5 " 300 0,085 0,09 0,11 0,10
6 " 250 0,075 0,085 0,09 0,11
7 " 200 0,065 0,07 0,08 0,12
8 " 150 0,055 0,057 0,06 0,135
9 Полистиролбетон модифицированный на шлакопортландцементе 500 0,12 0,13 0,14 0,075
10 То же 400 0,09 0,10 0,11 0,08
11 " 300 0,08 0,08 0,09 0,10
12 " 250 0,07 0,07 0,08 0,11
13 " 200 0,06 0,06 0,07 0,12
14 Газо- и пенобетон на цементном вяжущем 1000 0,29 0,38 0,43 0,11
15 То же 800 0,21 0,33 0,37 0,14
16 " 600 0,14 0,22 0,26 0,17
17 " 400 0,11 0,14 0,15 0,23
18 Газо- и пенобетон на известняковом вяжущем 1000 0,31 0,48 0,55 0,13
19 То же 800 0,23 0,39 0,45 0,16
20 " 600 0,15 0,28 0,34 0,18
21 " 500 0,13 0,22 0,28 0,235
22 Газо- и пенозолобетон на цементном вяжущем 1200 0,37 0,60 0,66 0,085
23 То же 1000 0,32 0,52 0,58 0,098
24 " 800 0,23 0,41 0,47 0,12

Кирпич

Кирпич — популярный материал как для возведения домов, так и для установки ограждающих конструкций. Его характеристики теплопроводности доступны в таблице:

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Глиняный обыкновенный на цементно-песчаном растворе 1800 0,56 0,7 0,81 0,11
2 Глиняный обыкновенный на цементно-шлаковом растворе 1700 0,52 0,64 0,76 0,12
3 Глиняный обыкновенный на цементно-перлитовом растворе 1600 0,47 0,58 0,7 0,15
4 Силикатный на цементно-песчаном растворе 1800 0,7 0,76 0,87 0,11
5 Трепельный на цементно-песчаном растворе 1200 0,35 0,47 0,52 0,19
6 То же 1000 0,29 0,41 0,47 0,23
7 Шлаковый на цементно-песчаном растворе 1500 0,52 0,64 0,7 0,11
Кирпичная кладка из пустотного кирпича
1 Керамический пустотный плотностью 1400 кг/м³ (брутто) на цементно-песчаном растворе 1600 0,47 0,58 0,64 0,14
2 Керамический пустотный плотностью 1300 кг/м³ (брутто) на цементно-песчаном растворе 1400 0,41 0,52 0,58 0,16
3 Керамический пустотный плотностью 1000 кг/м³ (брутто) на цементно-песчаном растворе 1200 0,35 0,47 0,52 0,17
4 Силикатный 11-пустотный на цементно-песчаном растворе 1500 0,64 0,7 0,81 0,13
5 Силикатный 14-пустотный на цементно-песчаном растворе 1400 0,52 0,64 0,76 0,14

Конструкционные материалы

Конструкционные материалы предназначены для облицовки и формирования железобетонных конструкций. Теплопроводность можно определить по таблице:

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Железобетон 2500 1,69 1,92 2,04 0,03
2 Бетон на гравии или щебне из природного камня 2400 1,51 1,74 1,86 0,03
3 Раствор цементно-песчаный 1800 0,58 0,76 0,93 0,09
4 Раствор сложный (песок, известь, цемент) 1700 0,52 0,7 0,87 0,098
5 Раствор известково-песчаный 1600 0,47 0,7 0,81 0,12
Облицовка природным камнем
1 Гранит, гнейс и базальт 2800 3,49 3,49 3,49 0,008
2 Мрамор 2800 2,91 2,91 2,91 0,008
3 Известняк 2000 0,93 1,16 1,28 0,06
4 То же 1800 0,7 0,93 1,05 0,075
5 " 1600 0,58 0,73 0,81 0,09
6 " 1400 0,49 0,56 0,58 0,11
7 Туф 2000 0,76 0,93 1,05 0,075
8 То же 1800 0,56 0,7 0,81 0,083
9 " 1600 0,41 0,52 0,64 0,09
10 " 1400 0,33 0,43 0,52 0,098
11 " 1200 0,27 0,35 0,41 0,11
12 " 1000 0,21 0,24 0,29 0,11

Кровельные материалы, гидроизоляционные, облицовочные и рулонные для полов

Когда построены стены дома, наступает очередь крыши. Кровельные материалы помогают защитить помещение от холода и дождя. Гидроизоляция нужна для того, чтобы влага не проникла к утеплителю. Рассмотрим табличные параметры теплопроводности:

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Листы асбестоцементные плоские 1800 0,35 0,47 0,52 0,03
2 То же 1600 0,23 0,35 0,41 0,03
3 Битумы нефтяные строительные и кровельные 1400 0,27 0,27 0,27 0,008
4 То же 1200 0,22 0,22 0,22 0,008
5 " 1000 0,17 0,17 0,17 0,008
6 Асфальтобетон 2100 1,05 1,05 1,05 0,008
7 Рубероид, пергамин, толь 600 0,17 0,17 0,17 -
8 Пенополиэтилен 26 0,048 0,049 0,050 0,001
9 То же 30 0,049 0,050 0,050 0,001
10 Линолеум поливинилхлоридный на теплоизолирующей подоснове 1800 0,38 0,38 0,38 0,002
11 То же 1600 0,33 0,33 0,33 0,002
12 Линолеум поливинилхлоридный на тканевой основе 1800 0,35 0,35 0,35 0,002
13 То же 1600 0,29 0,29 0,29 0,002
14 " 1400 0,2 0,23 0,23 0,002

Дерево, металлы и стекло

Древесина пользуется у российских строителей заслуженной популярностью. Из нее изготавливают вагонку, фанеру и даже паркетную доску. Металл необходим для устройства кровли и арматурного каркаса, а стекло занимает свое место в рамах на оконных проемах. Теплопроводность представлена в виде таблицы:

Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Сосна и ель поперек волокон 500 0,09 0,14 0,18 0,06
2 Сосна и ель вдоль волокон 500 0,18 0,29 0,35 0,32
3 Дуб поперек волокон 700 0,1 0,18 0,23 0,05
4 Дуб вдоль волокон 700 0,23 0,35 0,41 0,3
5 Фанера клееная 600 0,12 0,15 0,18 0,02
6 Картон облицовочный 1000 0,18 0,21 0,23 0,06
7 Картон строительный многослойный 650 0,13 0,15 0,18 0,083
Металлы и стекло
1 Сталь стержневая арматурная 7850 58 58 58 0
2 Чугун 7200 50 50 50 0
3 Алюминий 2600 221 221 221 0
4 Медь 8500 407 407 407 0
5 Стекло оконное 2500 0,76 0,76 0,76 0

Снижение теплопотерь

Как видно из диаграммы, в доме достаточно мест, через которые происходит утечка тепла. Чтобы снизить потери, нужно рассчитать сопротивление теплопередаче R и сравнить с нормативами:

Здания и помещения Градусо-сутки отопительного периода, °С·сут/год Базовые значения требуемого сопротивления теплопередаче R0, (м²·°С)/Вт, ограждающих конструкций
Стен Покрытий и перекрытий над проездами Перекрытий чердачных над неотаплива-емыми подпольями и подвалами Окон и балконных дверей, витрин и витражей Зенитных фонарей
Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития 2000 2,1 3,2 2,8 0,3 0,3
4000 2,8 4,2 3,7 0,45 0,35
6000 3,5 5,2 4,6 0,6 0,4
8000 4,2 6,2 5,5 0,7 0,45
10000 4,9 7,2 6,4 0,75 0,5
12000 5,6 8,2 7,3 0,8 0,55

 Формула выглядит так:

Сопротивление теплопередаче R = толщина слоя, м / коэффициент теплопередачи материала λ, Вт/(м·°С).

Пример: возьмем стену из елового бруса толщиной 15 сантиметров (0,15 м) в условиях эксплуатации «А». Коэффициент теплопередачи древесины λ вдоль волокон будет равен 0,29 Вт/(м·°С), тогда получим:

R=0,15/0,29=0,51 (м²·°С)/Вт.

Оказалось, что наша стена обеспечивает в 4 раза меньший показатель, чем нужно по нормативу 2,1 (м²·°С)/Вт. Чтобы подобрать необходимую толщину, преобразуем формулу к виду:

Толщина слоя, м = нормативный R0 из таблицы, (м²·°С)/Вт × коэффициент теплопередачи материала λ, Вт/(м·°С).

Пример: Толщина слоя = 2,1 (м²·°С)/Вт × 0,29 Вт/(м·°С) = 0,609 м. То есть, чтобы добиться минимальных условий сохранения тепловой энергии, нам нужно построить стены из елового бруса толщиной примерно 60 см. Только применение утеплителей снизит расход древесины.

Общая толщина складывается по формуле: толщ. 1 слоя + толщ. 2 слоя +...

Мы привели в статье полную таблицу коэффициентов теплопроводности. Показали, как рассчитывать необходимую толщину слоя строительных и отделочных материалов в соответствии с нормативами. Читателям останется лишь применить полученные знания на практике.

Что такое теплопроводность строительных материалов таблица

Общее понятие о теплопроводности и ее природа

Если отвечать простыми словами на вопрос о том, что такое теплопроводность в физике, то следует сказать, что передача тепла между двумя телами или различными областями одного и того же тела является процессом обмена внутренней энергией между частицами, составляющими тело (молекулы, атомы, электроны и ионы). Сама внутренняя энергия состоит из двух важных частей: из кинетической и из потенциальной энергии.

Что такое теплопроводность в физике с точки зрения природы этой величины? На микроскопическом уровне способность материалов проводить тепло зависит от их микроструктуры. Например, для жидкостей и газов указанный физический процесс происходит за счет хаотичных столкновений между молекулами, в твердых телах основная доля переносимого тепла приходится на обмен энергией между свободными электронами (в металлических системах) или фононами (неметаллические вещества), которые представляют собой механические колебания кристаллической решетки.

Способы передачи тепловой энергии

Рассматривая вопрос о том, что такое теплопроводность материалов, следует упомянуть о возможных способах передачи тепла. Тепловая энергия может передаваться между различными телами с помощью следующих процессов:

  • проводимость — этот процесс идет без переноса материи;
  • конвекция — перенос тепла непосредственно связан и с движением самой материи;
  • излучение — передача тепла осуществляется за счет электромагнитного излучения, то есть с помощью фотонов.

Чтобы тепло было передано с помощью процессов проводимости или конвекции, необходим непосредственный контакт между различными телами с тем отличием, что в процессе проводимости не существует макроскопического движения материи, а в процессе конвекции это движение присутствует. Отметим, что микроскопическое движение имеет место во всех процессах теплопередачи.

Для обычных температур в несколько десятков градусов Цельсия можно сказать, что на долю конвекции и проводимости приходится основная часть передаваемого тепла, а количество энергии, переданной в процессе излучения, является незначительным. Однако излучение начинает играть главную роль в процессе теплопередачи при температурах в несколько сотен и тысяч Кельвин, поскольку количество энергии Q, передаваемой этим способом, растет пропорционально 4-й степени абсолютной температуры, то есть ∼ T4. Например, наше солнце теряет большую часть энергии именно за счет излучения.

Коэффициент теплопроводности для твердых тел

Коэффициент термической проводимости для твердых тел k имеет следующий физический смыл: он указывает на количество теплоты, которое проходит за единицу времени через единицу площади поверхности в каком-либо теле единичной толщины и бесконечной длины и ширины при разнице температур на его концах, равной одному градусу. В международной системе единиц СИ коэффициент k измеряется в Дж/(с*м*К).

Данный коэффициент в твердых веществах зависит от температуры, поэтому его принято определять при температуре 300 K с целью сравнения способности проводить тепло различными материалами.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь — 47-58 в зависимости от марки стали;
  • алюминий — 209,3;
  • бронза — 116-186;
  • цинк — 106-140 в зависимости от чистоты;
  • медь — 372,1-385,2;
  • латунь — 81-116;
  • золото — 308,2;
  • серебро — 406,1-418,7;
  • каучук — 0,04-0,30;
  • стекловолокно — 0,03-0,07;
  • кирпич — 0,80;
  • дерево — 0,13;
  • стекло — 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Конвекция в жидкостях и газах

Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Температура материала


Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Когда учитывается коэффициент теплопроводности

Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.

Схема утепления деревянного дома

Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр. ).

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.


Теплопотери дома

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


Стена из бревен – одна из самых утепленных

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


Устройство каркасного дома в плане его утепления

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

ФотоВид кирпичаТеплопроводность, Вт/м*К

Керамический полнотелый 0,5-0,8
Керамический щелевой 0,34-0,43
Поризованный 0,22
Силикатный полнотелый 0,7-0,8
Силикатный щелевой 0,4
Клинкерный 0,8-0,9


Тепловая проводимость кирпичной кладки при разнице температуры в 10°С

Теплопроводность дерева: таблица по породам

Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница

Теплопроводность, Вт/м С 0,15 0,2 0,4 0,11 0,095 0,19 0,13

Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь

Теплопроводность, Вт/м С 0,15 0,15 0,045 0,15 0,4 0,17

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


У древесины теплопроводность ниже, чем у бетона и кирпича

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.


Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Вид металлаСтальЧугунАлюминийМедь

Теплопроводность, Вт/м С 47 62 236 328

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.


Тепловая проводимость у меди выше, чем у стали почти в семь раз

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Минеральная вата (базальтовая) 50 0,048
100 0,056
200 0,07
Стекловата 155 0,041
200 0,044
Пенополистирол 40 0,038
100 0,041
150 0,05
Пенополистирол экструдированный 33 0,031
Пенополиуретан 32 0,023
40 0,029
60 0,035
80 0,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Бетон 2400 1,51
Железобетон 2500 1,69
Керамзитобетон 500 0,14
Керамзитобетон 1800 0,66
Пенобетон 300 0,08
Пеностекло 400 0,11

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.


Таблица проводимости тепла воздушных прослоек

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами. Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев. Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ. Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов. Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер. Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Источники

  • https://FB.ru/article/394480/chto-takoe-teploprovodnost-v-fizike
  • https://ptk-granit.ru/what-to-choose/what-is-the-thermal-conductivity-of-building-materials-table-thermal-conductivity-and-other-characteristics-of-building-materials-in-figures/
  • https://obrabotkametalla.info/stal/koefficient-teploprovodnosti-i-teploperedachi-stali
  • https://kachestvolife.club/otoplenie/koefficienty-teploprovodnosti-stroitel-nyh-materialov-v-tablicah
  • https://instanko. ru/drugoe/teploprovodnost-metallov.html
  • https://homius.ru/tablitsa-teploprovodnosti-stroitelnyih-materialov.html

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность. 

Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.

Материал

Плотность (для сыпучих – насыпная плотность), кг/м3

Коэффициент теплопроводности, Вт/ (м*К)

Алюминий 2600-2700 203,5-221 растет с ростом плотности
Асбест 600 0,151
Асфальтобетон 2100 1,05
АЦП асбесто-цементные плиты 1800 0,35
Бетон см. также Железобетон 2300-2400 1,28-1,51 растет с ростом плотности
Битум 1400 0,27
Бронза 8000 64
Винипласт 1380 0,163
Вода при температурах выше 0 градусов С ~1000 ~0,6
Войлок шерстяной 300 0,047
Гипсокартон 800 0,15
Гранит 2800 3,49
Дерево, дуб - вдоль волокон 700 0,23
Дерево, дуб - поперек волокон 700 0,1
Дерево, сосна или ель - вдоль волокон 500 0,18
Дерево, сосна или ель - поперек волокон 500 0,10—0,15 растет с ростом плотности и влажности
ДСП, ОСП; древесно- или ориентированно-стружечная плита 1000 0,15
Железобетон 2500 1,69
Картон облицовочный 1000 0,18
Керамзит 200 0,1
Керамзит 800 0,18
Керамзитобетон 1800 0,66
Керамзитобетон 500 0,14
Кирпич керамический пустотелый (брутто1000) 1200 0,35
Кирпич керамический пустотелый (брутто1400) 1600 0,41
Кирпич красный глиняный 1800 0,56
Кирпич, силикатный 1800 0,7
Кладка из изоляционного кирпича 600 0,116—0,209 растет с ростом плотности
Кладка из обыкновенного кирпича 600–1700 0,384—0,698—0,814 растет с ростом плотности
Кладка из огнеупорного кирпича 1840 1,05 (при 800—1100°С)
Краска масляная 0,233
Латунь 8500 93
Лед при температурах ниже 0 градусов С 920 2,33
Линолеум 1600 0,33
Литье каменное 3000 0,698
Магнезия 85% в порошке 216 0,07
Медь 8500-8800 384-407 растет с ростом плотности
Минвата 100 0,056
Минвата 50 0,048
Минвата 200 0,07
Мрамор 2800 2,91
Накипь, водяной камень 1,163—3,49 растет с ростом плотности
Опилки древесные 230 0,070—0,093 растет с ростом плотности и влажности
Пакля сухая 150 0,05
Пенобетон 1000 0,29
Пенобетон 300 0,08
Пенопласт 30 0,047
Пенопласт ПВХ 125 0,052
Пенополистирол 100 0,041
Пенополистирол 150 0,05
Пенополистирол 40 0,038
Пенополистирол экструдированый 33 0,031
Пенополиуретан 32 0,023
Пенополиуретан 40 0,029
Пенополиуретан 60 0,035
Пенополиуретан 80 0,041
Пеностекло 400 0,11
Пеностекло 200 0,07
Песок сухой 1600 0,35
Песок влажный 1900 0,814
Полимочевина 1100 0,21
Полиуретановая мастика 1400 0,25
Полиэтилен 1500 0,3
Пробковая мелочь 160 0,047
Ржавчина (окалина) 1,16
Рубероид, пергамин 600 0,17
Свинец 11400 34,9
Совелит 450 0,098
Сталь 7850 58
Сталь нержавеющая 7900 17,5
Стекло оконное 2500 0,698—0,814
Стеклянная вата (стекловата) 200 0,035—0,070 растет с ростом плотности
Текстолит 1380 0,244
Торфоплиты 220 0,064
Фанера клееная 600 0,12
Фаолит 1730 0,419
Чугун 7500 46,5—93,0
Шлаковая вата 250 0,076
Эмаль 2350

0,872—1,163

Потери тепла при передаче через элементы здания

Передача тепла через стену здания или аналогичную конструкцию может быть выражена как:

H t = UA dt (1)

, где

H t = тепловой поток (БТЕ / час, Вт, Дж / с)

U = общий коэффициент теплопередачи, «U-значение» (БТЕ / час фут 2 o F, Вт / м 2 K)

A = площадь стены (футы 2 , м 2 )

dt = разница температур ( o F, K)

Общий коэффициент теплопередачи - коэффициент теплопередачи - описывает, насколько хорошо строительный элемент проводит тепло, или скорость передачи тепла (в ваттах или БТЕ / час) через одну единицу площади (м 2 или фут 2 ). ул. структура, деленная на разницу температур в конструкции.

Онлайн-калькулятор тепловых потерь

U-значение (БТЕ / час фут 2 o F, Вт / м 2 K)

Площадь стены (футы 2 , м 2 ) )

Разница температур ( o F, o C, K)

Общие коэффициенты теплопередачи некоторых распространенных строительных элементов

гофрированный металл - неизолированный
Строительный элемент Коэффициент теплопередачи
U-значение
(БТЕ / (час фут 2 o F)) (Вт / (м 2 K))
Двери Одиночный лист - металл 1.2 6,8
1 дюйм - дерево 0,65 3,7
2 дюйма - дерево 0,45 2,6
Кровля
Дерево 1 дюйм - неизолированное 0,5 2,8
Дерево 2 дюйма - неизолированное 0,3 1,7
Дерево 1 дюйм - изоляция 1 дюйм 0. 2 1,1
Дерево 2 дюйма - изоляция 1 дюйм 0,15 0,9
2 дюйма - бетонная плита 0,3 1,7
2 дюйма - бетонная плита - изоляция 1 дюйм 0,15 0,9
Окна Вертикальное одинарное остекление в металлической раме 5,8
Вертикальное одинарное остекление в деревянной раме 4.7
Вертикальное окно с двойным остеклением, расстояние между стеклами 30-60 мм 2,8
Вертикальное окно с тройным остеклением, расстояние между стеклами 30-60 мм 1,85
Герметичное вертикальное окно с двойным остеклением , расстояние между стеклами 20 мм 3,0
Вертикальное герметичное тройное остекление, расстояние между стеклами 20 мм 1,9
Вертикальное герметичное двойное остекление с покрытием Low-E 0. 32 1,8
Вертикальное окно с двойным остеклением с покрытием Low-E и заполнением тяжелым газом 0,27 1,5
Вертикальное окно с двойным остеклением с 3 пластиковыми пленками (с покрытием Low-E) и заправка тяжелым газом 0,06 0,35
Горизонтальное одинарное стекло 1,4 7,9
Стены 6 дюймов (150 мм) - заливной бетон 80 фунтов / фут 3 0.7 3,9
10 дюймов (250 мм) - кирпич 0,36 2,0 ​​

Значения U и R

Значение U (или U-фактор) является мерой скорости потеря или получение тепла из-за конструкции из материалов. Чем ниже коэффициент U, тем выше сопротивление материала тепловому потоку и тем лучше изоляционные свойства. Значение U - это величина, обратная значению R.

Общее значение U конструкции, состоящей из нескольких слоев, может быть выражено как

U = 1 / ∑ R (2)

, где

U = коэффициент теплопередачи (БТЕ / hr ft 2 o F, Вт / м 2 K)

R = «R-value» - сопротивление тепловому потоку в каждом слое (hr ft 2 o F / Btu, м 2 K / Вт)

R-значение одного слоя может быть выражено как:

R = 1 / C = s / k (3)

, где

C = проводимость слоя (БТЕ / час фут 2 o F, Вт / м 2 K)

k = теплопроводность материала слоя (БТЕ в / час фут 2 o F, Вт / м · К)

с = толщина слоя (дюймы, м)

Примечание! - в дополнение к сопротивлению в каждом строительном слое - существует сопротивление внутренней и внешней поверхности окружающей среде. Если вы хотите добавить поверхностное сопротивление к вычислителю U ниже - используйте один - 1 - для толщины - l t - и поверхностное сопротивление для проводимости - K .

Онлайн Значение U Калькулятор

Этот калькулятор можно использовать для расчета общего значения U для конструкции с четырьмя слоями. Добавьте толщину - л т - и проводимость слоя - К - для каждого слоя.Если количество слоев меньше четырех, замените толщину одного или нескольких слоев нулем.

1. с (дюйм, м) k (британских тепловых единиц / час фут 2 o F, Вт / м · K)

2. с (дюйм, м) k (британских тепловых единиц дюйм / час фут 2 o F, Вт / м · К)

3. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)

4. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)

Пример - значение U Бетонная стена

Бетонная стена толщиной 0. 25 (м) и проводимость 1,7 (Вт / мК) используются для значений по умолчанию в калькуляторе выше. Сопротивление внутренней и внешней поверхности оценивается в 5,8 (м 2 K / Вт) .

Значение U можно рассчитать как

U = 1 / (1 / (5,8 м 2 K / Вт) + (0,25 м) / (1,7 Вт / мK))

= 3,13 Вт / м 2 K

R-значения некоторых стандартных строительных материалов

Гипсокартон um 5/8 " -значения некоторых обычных стеновых конструкций
Материал Сопротивление
R-значение
(час фут 2 o F / Btu) 2 K / W)
Деревянный сайдинг со скосом 1/2 "x 8", внахлест 0.81 0,14
Деревянный сайдинг со скосом 3/4 "x 10", внахлест 1,05 0,18
Штукатурка (на дюйм) 0,20 0,035
Строительная бумага 0,01
Фанера 1/4 " 0,31 0,05
Фанера 3/8" 0,47 0,08
Фанера 1/2 " 0. 62 0,11
Оргалит 1/4 " 0,18 0,03
Мягкая плита, сосна или аналогичный материал 3/4" 0,94 0,17
Мягкая плита, сосна или аналогичный 1 1 2 " 1,89 0,33
Мягкая плита, сосна или аналогичный 2 1/2" 3,12 0,55
Гипсокартон 1/2 " 0,45 0,08
0.56 0,1
Стекловолокно 2 дюйма 7 1,2
Стекловолокно 6 дюймов 19 3,3
Обычный кирпич1 на дюйм 0.202 0.202
Материал Сопротивление
R-значение
(час фут 2 o F / BTU) 2 K / Вт )
Стена с каркасом 2 x 4, неизолированная 5 0. 88
Стена с каркасом 2 x 4 с изоляцией из войлока 3 1/2 дюйма 15 2,6
Стена с каркасом 2 x 4 с жесткой панелью из полистирола 1 ", изоляционным покрытием 3 1/2" 18 3,2
Стена с каркасом 2 x 4 с изоляционной панелью 3/4 ", изоляцией из войлока 3 1/2", изоляцией из полиуретана 5/8 " 22 3,9
Стена с каркасом 2 x 6 с Изоляционное покрытие 5 1/2 " 23 4
Стена с 2 x 6 стойками с изоляционной панелью 3/4", изоляция из войлока 5 1/2 ", изоляция из полиуретана 5/8" 28 4 .9

Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица

Процесс передачи энергии от нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение этого процесса отражает теплопроводность материала. Эта концепция очень важна при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить значительное количество тепла.

Понятие теплопроводности

Теплопроводность - это процесс теплообмена энергии, который возникает из-за столкновения мельчайших частиц тела. И этот процесс не остановится, пока не наступит момент равновесия температур. На это уходит определенное время. Чем больше времени затрачивается на теплообмен, тем ниже показатель теплопроводности.

Данный показатель выражается как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов.Расчет основан на количестве тепловой энергии, прошедшей через заданную площадь поверхности материала. Чем больше расчетное значение, тем быстрее объект отдаст все свое тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • Плотность материала. При увеличении этого параметра взаимодействие частиц материала усиливается. Соответственно, они быстрее передадут температуру.А это значит, что по мере увеличения плотности материала теплопередача улучшается.
  • Пористость вещества. Пористые материалы неоднородны по своей структуре. Внутри них большое количество воздуха. А это значит, что молекулам и другим частицам будет сложно передавать тепловую энергию. Соответственно повышается коэффициент теплопроводности.
  • Влажность также влияет на теплопроводность. Влажные поверхности материала пропускают больше тепла.В некоторых таблицах указывается даже рассчитанный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (нормальном) и влажном.
Выбирая материал для утепления помещения, важно учитывать также условия, в которых он будет использоваться.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом учитывается способность материалов сохранять тепло.Благодаря их правильному подбору жителей внутри помещения всегда будет комфортно. Во время эксплуатации сэкономятся деньги на отопление.

Утепление на этапе проектирования - оптимальное, но не единственное решение. Утеплить уже готовую постройку, проведя внутренние или внешние работы, несложно. Толщина изоляционного слоя будет зависеть от выбранных материалов. Некоторые из них (например, дерево, пенобетон) в некоторых случаях можно использовать без дополнительного слоя теплоизоляции.Главное, чтобы их толщина превышала 50 сантиметров.

Особое внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Через эти элементы теряется больше всего тепла. Визуально вы можете увидеть это на фото в начале статьи.

Конструкционные материалы и их показатели

Для возведения зданий используются материалы с низким коэффициентом теплопроводности. Самыми популярными являются:

  • Бетон.Его теплопроводность находится в пределах 1,29-1,52 Вт / м * К. Точное значение зависит от консистенции раствора. На этот показатель также влияет плотность исходного материала, которая составляет 500-2500 кг / м 3 . Используйте этот материал в виде раствора для фундаментов, в виде блоков - для возведения стен и фундаментов.
  • Железобетон, значение теплопроводности которого составляет 1,68 Вт / м * К. Плотность материала достигает 2400-2500 кг / м 3 .
  • Древесина, издревле использовавшаяся как строительный материал. Его плотность и теплопроводность в зависимости от породы составляют 150-2100 кг / м 3 и 0,2-0,23 Вт / м * К соответственно.

Еще один популярный строительный материал - кирпич. В зависимости от состава он имеет следующие показатели:

  • Саман (из глины): 0,1-0,4 Вт / м * К;
  • керамика (изготовленная методом обжига): 0,35-0,81 Вт / м * К;
  • силикатный (из песка с добавлением извести): 0.82-0,88 Вт / м * К.

Бетонные материалы с добавкой пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для строительства гаражей, сараев, дач, бань и др. другие конструкции. В данную группу входят:

  • Пенобетон. Производится с добавлением пенообразователей, благодаря чему имеет пористую структуру с плотностью 500-1000 кг / м. 3 . При этом способность передавать тепло определяется значением 0.1-0,37 Вт / м * К.
  • Керамзитобетон, показатели которого зависят от его вида. Сплошные блоки не имеют пустот и отверстий. С полостями внутри делают пустотелые блоки, менее прочные, чем первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800 кг / м3. Его значение находится в пределах 0,14-0,65 Вт / м * К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра.Такая структура определяет плотность материала (300-800кг / м 3 ). За счет этого коэффициент достигает 0,1-0,3 Вт / м * К.

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

  • пенопласт, который имеет плотность 15-50кг / м 3 , теплопроводность 0,031-0,033 Вт / м * К;
  • пенополистирол, плотность которого такая же, как у предыдущего материала. Но коэффициент теплопередачи находится на уровне 0,029-0,036Вт / м * К;
  • стекловата. Характеризуется коэффициентом 0,038-0,045 Вт / м * К;
  • каменная вата с показателем 0,035-0,042Вт / м * К.

Таблица показателей

Для удобства эксплуатации коэффициент теплопроводности В таблицу принято добавлять материал. В нем, помимо самого коэффициента, могут быть отражены такие показатели, как степень влажности, плотность и другие.Материалы с высоким коэффициентом теплопроводности объединены в таблице с показателями низкой теплопроводности. Пример этой таблицы приведен ниже:

Использование коэффициента теплопроводности материала позволит построить желаемую конструкцию. Главное - выбрать товар, отвечающий всем необходимым требованиям. Тогда в доме будет комфортно для проживания; в нем сохранится благоприятный микроклимат.

Правильно подобранный изоляционный материал снизит тепловые потери, поэтому отпадает необходимость «обогревать улицу». За счет этого существенно снизятся финансовые затраты на отопление. Такая экономия скоро вернет все деньги, которые будут потрачены на покупку утеплителя.

ПАРОВЫЕ ТАБЛИЦЫ

Приведенные ниже таблицы свойств пара взяты непосредственно из главы 5.5.3 Руководства по проектированию теплообменников, 1986 г., составленного К. Ф. Битоном.

Таблицы в этом разделе перепечатаны с разрешения из NBS / NRC Steam Tables.

Символы и номенклатура для таблиц

47 47 90 847 кг / с 2 = Н / м
Символ Свойство Единицы
h Удельное давление 7 кДж бар = 0.1 МПа
Pr Число Прандтля (= ηC p / λ) безразмерный
r удельная энтальпия парообразования кДж / кг
с удельная энтальпия
с кДж / (кг · К)
т с температура при насыщении
u удельная внутренняя энергия кДж / кг
ν удельный объем м 900 / кг
ε статическая диэлектрическая проницаемость безразмерная
η вязкость 10 −6 кг / (см) = МПа с
λ теплопроводность мВт / (К · м)
ρ плотность кг / м 3
σ поверхностное натяжение
удельная энтропия испарения кДж / (кг · К)
насыщенный пар означает состояние насыщенного пара
г
l обозначает насыщенное жидкое состояние

Опорным состоянием для всех значений свойств является жидкость в тройной точке, для которой удельная внутренняя энергия и удельная энтропия установлены равными нулю.

Рисунок 1. Вязкость.

Рисунок 2. Теплопроводность.

Рисунок 3. Число Прандтля.

Таблица 1. Насыщение (температура)

Таблица 2. Насыщение (давление)

Таблица 3. Сжатая вода и перегретый пар

Таблица 4. Удельная теплоемкость при постоянном давлении

Таблица 5. Вязкость

Таблица 6.Теплопроводность

Таблица 7. Число Прандтля

Таблица 8. Свойства сосуществующих фаз: вязкость, теплопроводность, проводимость, число Прандтля, диэлектрическая проницаемость, поверхностное натяжение

Таблица 9. Коэффициент теплового расширения β = ( 1 / ν) (∂ν / ∂T) p жидкой воды как функция давления и температуры. (β в 10 −3 / K.)

Таблица 10. Температуропроводность æ жидкой воды как функция давления и температуры.(k дюймов 10 −6 м 2 / сек.)

ССЫЛКИ

Хаар Л. , Галлахер Дж. С. и Келл Г. С. (1984) Термодинамические и транспортные свойства и компьютерные программы для паров и жидких состояний воды в единицах S.I. NBS / NRC, Hemisphere, Вашингтон, округ Колумбия

VDI — Wärmeatlas (1974) 2-е изд., Verein Deutsches Ingenieure, Düsseldorf.

Список литературы
  1. Хаар Л., Галлахер Дж. С. и Келл Г.S. (1984) Термодинамические и транспортные свойства и компьютерные программы для пара и жидких состояний воды в единицах S.I. NBS / NRC, Hemisphere, Washington, D.C.
  2. VDI - Wärmeatlas (1974) 2-е изд., Verein Deutsches Ingenieure, Düsseldorf. DOI: 10.1002 / cite.330470908
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх