Посчитать площадь воздуховодов онлайн: Расчет площади воздуховодов и фасонных изделий

Содержание

Расчет площади воздуховодов - Мир Климата и Холода

Расчет площади воздуховодов выполняется при подготовке спецификации, а также на производстве для понимания, сколько сырья потребуется для изготовления проектного количества воздуховодов.

Эта задача может звучать следующим образом:

  • расчет площади воздуховодов
  • узнать площадь воздуховода
  • расчет м2 воздуховодов

Расчет площади воздуховодов онлайн

Расчет выполняется отдельно для круглых и прямоугольных воздуховодов. Исходными данными являются:

  • Длина воздуховода
  • Диаметр круглого или стороны сечения прямоугольного воздуховода.

Представленный выше калькулятор позволяет быстро рассчитать площадь любого воздуховода онлайн. Вычисления производятся на основе введенных значений и не предусматривают запаса. Чтобы не ошибиться при изготовлении воздуховодов, рекомендуем полученную площадь увеличить на 10-20%.

Формула расчёта площади воздуховодов

Площадь воздуховодов определяется путём перемножения периметра сечения воздуховода на длину воздуховода:

  • S = П·L, где П и L — соответственно, периметр и длина воздуховода в метрах.

Важно помнить о размерности величин в формуле, приведённой выше. Обычно сечение воздуховода задаётся в миллиметрах (например, диаметр 250 или сечение 500×250), а длина — в метрах (например, 5 метров). Но в формулу необходимо подставлять все величины, выраженные в метрах. Причем, предварительно следует вычислить длину периметра сечения воздуховода.

Для упрощения задачи по расчету площади воздуховодов применяют готовые формулы для круглых и прямоугольных воздуховодов.

 

Расчет площади круглого воздуховода

Расчет площади круглого воздуховода выполняется по формуле:

  • S = π·D·L, где D и L — диаметр и длина воздуховода в метрах.

Например, воздуховод диаметром 250 мм и длиной 5 метров будет иметь следующую площадь:

  • S = π·(250/1000)·5 ≈ 4 м2 — это и есть м2 воздуховода (метраж/квадратура).

Расчет площади прямоугольного воздуховода

Расчет площади прямоугольного воздуховода выполняется по формуле:

  • S = 2·(A+B)·L, где A и B — длины сторон воздуховода (в метрах), а L — длина воздуховода в метрах.

Например, воздуховод диаметром сечением 500×300 (то есть со сторонами 0,5м и 0,3м) и длиной 10 метров будет иметь следующую площадь:

  • S = 2·(0,5+0,3)·10 = 16 м2.

 

Расчета площади сечения и диаметра воздуховода вентиляции онлайн

Расчет площади сечения воздуховода (подробнее)

Расход воздуха, м³/ч:

Рекомендуемая скорость, м/с:

Площадь сечения воздуховода: см²

Расчет фактической площади прямоугольного воздуховода (подробнее)

Высота, мм:

Ширина, мм:

Расчетная площадь прямоугольного воздуховода: см²

Расчет фактической площади круглого воздуховода (подробнее)

Диаметр, мм:

Расчетная площадь круглого воздуховода: см²

Расчет фактической скорости (подробнее)

Расход воздуха, м³/с:

Площадь сечения, м²:

Фактическая скорость воздуха: м/c

Расчет эквивалентного диаметра прямоугольного воздуховода (подробнее)

Высота, мм:

Ширина, мм:

Эквивалентный диаметр: м


Расчет площади сечения воздуховода

S = L * 2,778 / V, где:

S – площадь;
L – количество затрачиваемого воздуха;
V – скорость перемещения воздушной массы;
2,778 – необходимый коэффициент.

Расчет фактической площади прямоугольного воздуховода

S = A * B / 100, где:

S – показатель, соответствующий фактической площади;
A – высота;
B – ширина.

Расчет фактической площади круглого воздуховода

S = 3,14 * D² / 400, где:

S – показатель, соответствующий фактической площади;
D – диаметр коммуникации;
3,14 – математическая постоянная (число Пи).

Расчет фактической скорости

Vфакт = Q / Fфакт, где:

Vфакт – фактическая скорость воздуха;
Q
 – расход воздуха;
Fфакт – фактическая площадь сечения воздуховода.

Расчет эквивалентного диаметра прямоугольного воздуховода

DL = (2Aст * Bст) / (Aст + Bст), где:

DL – эквивалентный диаметр;
Aст – стандартная высота;
Bст – стандартная ширина.

Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий

Эффективность функционирования вентиляционных систем зависит от правильного подбора отдельных элементов и оборудования. Расчет площади воздуховода производится с целью обеспечения требуемой кратности смены воздуха в каждом помещении в зависимости от его назначения. Принудительная и естественная вентиляция требует отдельных алгоритмов проектных работ, но имеет общие направления. Во время определения сопротивления воздушному потоку учитывается геометрия и материал изготовления воздуховодов, их общая длина, кинематическая схема, наличие ответвлений. Дополнительно выполняется расчет потерь тепловой энергии для обеспечения благоприятного микроклимата и снижения затрат на содержание здания в зимний период времени.

Расчет площади сечения выполняется на основе данных по аэродинамическому расчету воздуховодов. С учетом полученных значений производится:

  1. Подбор оптимальных размеров поперечных сечений воздуховодов с учетом нормативных допустимых скоростей движения воздушного потока.
  2. Определение максимальных потерь давления в системе вентиляции в зависимости от геометрии, скорости движения и особенностей схемы воздуховода.

Последовательность расчета вентиляционных систем

1.Определение расчетных показателей отдельных участков общей системы. Участки ограничиваются тройниками или технологическими заслонками, расход воздуха по длине всего участка стабильный. Если от участка есть ответвления, то их расход по воздуху суммируется, а для участка определяется общий. Полученные значения отображаются на аксонометрической схеме.

2.Выбор магистрального направления системы вентиляции или отопления. Магистральный участок имеет самый большой расход воздуха среди всех выделенных во время расчетов. Он должен быть наиболее протяженным из всех последовательно расположенных отдельных участков и отводов. Согласно нормативным документам нумерация участков начинается с наименее нагруженного и продолжается по возрастанию воздушного потока.

Примерная схема системы вентиляции с обозначениями ответвлений и участков

3.Параметры сечений расчетных участков системы вентиляции подбираются с учетом рекомендованных стандартами скоростей в воздуховодах и жалюзийных решетках. Согласно государственным стандартам скорость воздуха в магистральных трубопроводах ≤ 8 м/с, в ответвлениях ≤ 5 м/с, в решетках жалюзи ≤ 3 м/с.

С учетом имеющихся предварительных условий выполняются расчеты по вентиляционной системе.

Общие потери давления в воздуховодах:

Расчет прямоугольных воздуховодов по потере давления:

R – удельные потери на трение о поверхность воздуховода;

L – длина воздуховода;

n – поправочный коэффициент в зависимости от показателей шероховатости воздуховодов.

Удельные потери давления для круглых сечений определяются по формуле:

λ – коэффициент величины гидравлического сопротивления трения;

d – диаметр сечения воздуховода;

Рд

– фактическое давление.

Для расчета коэффициента сопротивления трения для круглого сечения трубы применяется формула:

Во время расчетов допускается использование таблиц, в которых на основании вышеизложенных формул определены практические потери на трение, показатели динамического давления и расход воздуха для различных скоростей потока для воздуховодов круглой формы.

Нужно иметь в виду, что показатели фактического расхода воздуха в прямоугольном и круглом воздуховодах с одинаковой площадью сечений неодинаковы даже при полном равенстве скоростей движения воздушного потока. Если температура воздуха превышает +20°С, то нужно пользоваться поправочными коэффициентами на трение и местное сопротивление.

Расчет системы вентиляции состоит из расчета основной магистрали и всех ответвлений, подключенных к ней. При этом нужно добиваться положения, чтобы скорость движения воздуха постоянно возрастала по мере приближения к всасывающему или нагнетающему вентилятору. Если схема воздуховода не позволяет учесть потери ответвлений, а их значения не превышают 10% общего потока, то разрешается использовать диаграмму для гашения избыточного давления. Коэффициент сопротивления воздушным потокам диафрагмы рассчитывается по формуле:

Приведенные выше расчеты воздуховодов пригодны для использования следующих типов вентиляции:

  1. Вытяжной. Используется для удаления из производственных, торговых, спортивных и жилых помещений отработанного воздуха. Дополнительно может иметь специальные фильтры для очистки выбрасываемого наружу воздуха от пыли или вредных химических соединений, могут монтироваться внутри или снаружи помещений.
  2. Приточной. В помещения подается подготовленный (нагретый или очищенный) воздух, может иметь специальные приспособления для понижения уровня шума, автоматизации управления и т. д.
  3. Приточно/вытяжной. Комплекс оборудования и устройств для подачи/удаления воздуха из помещений различного назначения, может иметь установки рекуперации тепла, что значительно сокращает затраты на поддержание в помещениях благоприятного микроклимата.

Движение воздушных потоков по воздуховодам может быть горизонтальным, вертикальным или угловым. С учетом архитектурных особенностей помещений, их количества и размеров воздуховоды могут монтироваться в несколько ярусов в одном помещении.

Расчет площади сечения трубопровода

После того как определена скорость движения воздуха по воздуховодам с учетом требуемой кратности обмена, можно рассчитывать параметры сечения воздуховодов по формуле S=R\3600v, где S – площадь сечения воздуховода, R – расход воздуха в м3/час, v – скорость движения воздушного потока, 3600 – временной поправочный коэффициент. Площадь сечения позволяет определить диаметр круглого воздуховода по формуле:

Если в помещении смонтирован воздуховод квадратного сечения, то его рассчитывают по формуле de = 1.30 x ((a x b)0.625 / (a + b)0.25).

de – эквивалентный диаметр для круглого воздуховода в миллиметрах;

a и b длина сторон квадрата или прямоугольника в миллиметрах. Для упрощения расчетов пользуйтесь переводной таблицей № 1.

Таблица № 1

Для вычисления эквивалентного диаметра овальных воздуховодов используется формула d = 1.55 S0.625/P0.2

S – площадь сечения воздуховода овального воздуховода;

P ­– периметр трубы.

Площадь сечения овальной трубы вычисляется по формуле S = π×a×b/4

S – площадь сечения овального воздуховода;

π = 3,14;

a = большой диаметр овального воздуховода;

b = меньший диаметр овального воздуховода.
Подбор овального или квадратного воздуховодов по скорости движения воздушного потокаДля облегчения подбора оптимального параметра проектировщики рассчитали готовые таблицы. С их помощью можно выбрать оптимальные размеры воздуховодов любого сечения в зависимости от кратности обмена воздуха в помещениях. Кратность обмена подбирается с учетом объема помещения и требований СанПин.


Расчет параметров воздуховодов и систем естественной вентиляцииВ отличие от принудительной подачи/удаления воздуха для естественной вентиляции важны показания разницы давления снаружи и внутри помещений. Расчет сопротивления и выбор направления надо делать таким способом, чтобы гарантировать минимальную потерю давления потока.

При расчетах выполняется увязка существующих гравитационных давлений с фактическими потерями давления в вертикальных и горизонтальных воздуховодах.


Классификаций исходных данных во время проведения расчетов сечения воздуховодовВо время расчетов нужно принимать во внимание требования действующего СНиПа 2.04.05-91 и СНиПа 41-01-2003. Расчет систем вентиляции по диаметру воздуховодов и используемому оборудованию должен обеспечивать:

  1. Нормируемые показатели по чистоте воздуха, кратности обмена и показателям микроклимата в помещениях. Выполняется расчет мощности монтируемого оборудования. При этом уровень шума и вибрации не может превышать установленных пределов для зданий и помещений с учетом их назначения.
  2. Системы должны быть ремонтнопригодными, во время проведения плановых регламентных работ технологический цикл функционирования предприятий не должен нарушаться.
  3. В помещениях с агрессивной средой предусматриваются только специальные воздуховоды и оборудование, исключающее искрообразование. Горячие поверхности должны дополнительно изолироваться.
Нормативы расчетных условий для определения сечения воздуховодов

Расчет площади воздуховодов должен обеспечивать:

  1. Надлежащие условия по чистоте и температурному режиму в помещениях. Для помещений с избытком теплоты обеспечивать его удаление, а в помещениях с недостатком теплоты минимизировать потери теплого воздуха. При этом следует придерживаться экономической целесообразности выполнения названных условий.
  2. Скорость движения воздуха в помещениях не должна ухудшать комфортность пребывания в помещениях людей. При этом принимается во внимание обязательная очистка воздуха в рабочих зонах. В струе входящего в помещение воздуха скорость движения Nх определяется по формуле Nх = Кn × n. Максимальная температура входящего воздуха определяется по формуле tx = tn + D t1, а минимальная по формуле tcx = tn + D t2. Где: nn, tn – нормируемая скорость воздушного потока в м/с и температура воздуха на рабочем месте в градусах Цельсия, К =6 (коэффициент перехода скорости воздуха на выходе из воздуховода и в помещении), D t1, D t2 – максимально допустимое отклонение температуры.
  3. Предельную концентрацию вредных для здоровья химических соединений и взвешенных частиц согласно ГОСТ 12.1.005-88. Дополнительно нужно учитывать последние постановления Госнадзора.
  4. Параметры наружного воздуха. Регулируются в зависимости от технологических особенностей производственного процесса, конкретного назначения сооружения и зданий. Показатели концентрации взрывоопасных соединений и веществ должны отвечать требованиями противопожарных государственных органов.

Монтаж вентиляционных систем с принудительной подачей/удалением воздуха нужно делать только в тех случаях, когда характеристики естественной вентиляции не могут обеспечивать требуемых параметров по чистоте и температурному режиму в помещениях или здания имеют отдельные зоны с полным отсутствием естественного притока воздуха. Для некоторых помещений площадь воздуховодов подбирается с таким условием, чтобы в помещениях постоянно поддерживался подпор и исключалась подача наружного воздуха. Это касается приямков, подвалов и иных помещений, в которых есть вероятность скапливания вредных веществ. Дополнительно воздушное охлаждение должно присутствовать на рабочих местах, которые имеют тепловое облучение более 140 Вт/м2.
Требования к системам вентиляцииЕсли расчетные данные по системам вентиляции понижают температуру в помещениях до +12°С, то в обязательном порядке нужно предусматривать одновременное отопление. К системам присоединяются отопительные агрегаты соответствующей мощности с целью доведения температурных значений до нормированных государственными стандартами. Если вентиляция монтируется в производственных зданиях или общественных помещениях, в которых постоянно пребывают люди, то нужно предусматривать не менее двух приточных и двух вытяжных постоянно действующих агрегатов. Размер площади воздуховодов должен обеспечивать расчетную величину воздушных потоков. Для соединенных или смежных помещений допускается иметь две системы вытяжки и одну систему притока или наоборот.

Если помещения должны вентилироваться в круглосуточном режиме, то к смонтированным воздуховодам обязательно нужно подключать резервное (аварийное) оборудование. Дополнительные ответвления должны учитываться, по ним делается отдельный расчет площади. Резервный вентилятор можно не устанавливать лишь в случаях если:

  1. После выхода из строя системы вентиляции есть возможность быстро остановить рабочий процесс или вывести людей из помещения.
  2. Технические параметры аварийной вентиляции полностью обеспечивают требования по чистоте и температуре воздуха в помещениях.

Общие требования к воздуховодамРасчет окончательных параметров воздуховодов должен предусматривать возможность:

  1. Монтажа противопожарных клапанов вертикальном или горизонтальном положении.
  2. Установки на межэтажных площадках воздушных затворов. Конструктивные особенности устройств должны гарантировать выполнение нормативных требований по аварийному перекрытию отдельных ответвлений вентиляционной системы и предотвращению распространения дыма или огня по всему зданию. При этом длина участка, на котором присоединяются затворы, не должна быть менее двух метров.
  3. К каждому поэтажному коллектору может присоединяться не более пяти воздуховодов. Узел соединения создает дополнительное сопротивление воздушному потоку, эту особенность нужно учитывать во время расчета размеров.
  4. Установку систем автоматической противопожарной сигнализации. Если привод сигнализации монтируется внутри воздуховода, то при определении его оптимального диаметра следует принимать во внимание уменьшение эффективного диаметра и появление дополнительного сопротивления воздушному потоку из-за завихрений. Такие же требования выдвигаются при установке обратных клапанов, предупреждающих протекание вредных химических соединений из одного производственного помещения в другое.

Воздуховоды из негорючих материалов должны устанавливаться для систем вентиляции с отсосом пожароопасных продуктов или с температурой более +80°С. Главные транзитные участки вентиляции должны быть металлическими. Кроме того, металлические воздуховоды монтируются на чердачных помещениях, в технических комнатах, в подвалах и подпольях.

Общие потери воздуха для фасонных изделий определяются по формуле:

Где р – удельные потери давления на квадратный метр развернутого сечения воздуховода, ∑Ai – обща развернутая площадь. В пределах одной схемы монтажа системы вентиляции потери можно принимать по таблице.

Во время расчетов размеров воздуховодов в любом случае понадобится инженерная помощь, сотрудники нашей компании имеют достаточно знаний для решения всех технических вопросов.

Воздуховоды - диаметр и площадь поперечного сечения

Круглые вентиляционные каналы и площади поперечного сечения - британские единицы

Диаметр воздуховода Площадь
(дюйм) (мм) (футы 2 ) 2 )
8 203 0,3491 0,032
10 254 0.5454 0,051
12 305 0,7854 0,073
14 356 1,069 0,099
16 406 1,396 0,130 18 457 1,767 0,164
20 508 2,182 0,203
22 559 2.640 0,245
24 609 3,142 0,292
26 660 3,687 0,342
28 711 4,276 0,397 30 762 4,900 0,455
32 813 5,585 0,519
34 864 6.305 0,586
36 914 7,069 0,657

Круглые вентиляционные каналы и площади поперечного сечения - метрические единицы

мм)
Диаметр воздуховода Площадь
2 ) (мм 2 ) (дюйм 2 )
63 0.003 3019 4,7
80 0,005 4902 7,6
100 0,008 7698 11,9
125 0,012 12076
160 0,020 19856 30,8
200 0,031 31103 48,2
250 0.049 48695 75,5
315 0,077 77437 120
400 0,125 125036 194
500 0,196 19553
630 0,311 310736 482
800 0,501 501399 777
1000 0.784 783828 1215
1250 1,225 1225222 1899

Загрузите и распечатайте диаграмму поперечного сечения воздуховодов круглого сечения.

Калькулятор размеров воздуховодов - Размеры воздуховодов

Размер воздуховодов

Системы

HVAC работают намного эффективнее, если размер используемых вами воздуховодов подходит для вашего дома. Установите воздуховоды слишком маленького размера, и вашей системе придется усерднее работать, чтобы поддерживать тепло и охлаждение вашего дома.Если размер вашего воздуховода слишком велик, скорость будет нарушена, а это означает, что вы не сможете почувствовать ее через вентиляционные отверстия.

Для определения размеров воздуховодов

используется сложная формула, которая включает размеры вашего дома в квадратных футах, размер вашего блока, необходимую скорость воздушного потока, а также потери на трение и статическое давление вашей системы HVAC. Вот почему профессионалы HVAC имеют в своем распоряжении схемы и инструменты, позволяющие упростить весь процесс.

Что нужно знать для расчета размеров воздуховодов для дома:

  • Площадь вашего дома.
  • квадратных метров каждой отдельной комнаты в вашем доме.
  • Расчет кубических футов в минуту (объяснено ниже)
  • Подбор размера воздуховода Коэффициент потерь на трение

Самостоятельное определение размеров воздуховода может оказаться утомительной и сложной задачей. Иногда лучше доверить это специалисту по HVAC, чтобы получить идеальный рабочий размер воздуховода HVAC для вашего дома.


Определение размера квадратного метра вашего дома

Размер вашего дома определяет размер ваших нагревательных и охлаждающих устройств, но он также определяет, насколько большими должны быть размеры ваших воздуховодов.Чтобы точно определить размер воздуховода, вам необходимо точно измерить квадратные метры не только вашего дома в целом, но и размера каждой комнаты.

Проведите рулеткой по длине и ширине каждой стены, разделив комнаты необычной формы на отдельные прямоугольные части, чтобы при необходимости рассчитать размеры. Запишите каждое измерение в таблицу, чтобы отслеживать их, потому что они вам понадобятся позже!

Кубические футы в минуту Расчет размера

  • кубических футов в минуту = (единицы HVAC Тонны x 400) / общая площадь дома в квадратных футах.
  • Рассчитать для каждой отдельной комнаты.

Далее нам нужно поговорить о кубических футах в минуту или CFM. Это измерение указывает скорость или расход воздуха, необходимые для точного обогрева или охлаждения комнаты. Поскольку размер вашего воздуховода может увеличивать или уменьшать это измерение, вам нужно будет найти необходимый CFM для каждой комнаты, прежде чем вы сможете получить правильный размер воздуховода для каждого помещения.

Чтобы рассчитать кубический фут в минуту, вам необходимо знать размер вашего нагревательного или охлаждающего агрегата в тоннах.Умножьте это число на 400, что является средней производительностью блока HVAC. Затем разделите на общую площадь вашего дома. Это даст вам множитель для CFM всех ваших комнат. Итак, если вы начинаете с кухни, а площадь кухни составляет 300 квадратных футов, чтобы найти CFM комнаты, вам нужно умножить 300 на (размер единицы x 400) / общий квадратный метр вашего дома. Сделайте это для каждой комнаты в вашем доме.

Размер воздуховода Коэффициент потерь на трение

Еще одна важная единица измерения - коэффициент потерь на трение в воздуховодах.Это поможет вашему подрядчику определить статическое давление для вашего устройства по всей длине воздуховодов - еще одно измерение размера, которое влияет на общий поток воздуха из вашей системы.

Коэффициент потерь на трение зависит от множества различных размеров воздуховодов, таких как длина каждого воздуховода; количество катушек, фильтров, решеток, регистров и заслонок в вашей системе; и количество витков в воздуховоде. Ваш подрядчик будет использовать калькулятор размера воздуховода, чтобы объединить эти измерения и функции в измерения статического давления вашей системы.Затем они умножают ее на 100 и делят на общую длину воздуховодов вашей системы.

Однако это, очевидно, очень сложное измерение - и оно становится еще более сложным в зависимости от размера и формы ваших воздуховодов. По этой причине обычно лучше доверить расчет коэффициента потерь на трение профессиональному подрядчику. Но вы можете найти общее число с помощью онлайн-калькулятора потерь на трение.

Использование калькулятора размеров воздуховодов HVAC

Ваш общий размер воздуховода определяется суммированием размера, CFM и потерь на трение вашего дома - это означает, что в конечном итоге расчет оказывается довольно сложным.Из-за этого профессионалы и любители HVAC обычно не рассчитывают окончательный размер воздуховодов HVAC самостоятельно. Вместо этого они используют программное обеспечение или программные калькуляторы, которые могут сделать за них эти окончательные выводы.

Поскольку специалист по HVAC имеет доступ к более сложным инструментам, можно с уверенностью сказать, что его расчеты будут немного точнее, чем у домашнего мастера.

Тем не менее, при проектировании системы воздуховодов HVAC всегда следует консультироваться по крайней мере со знающим профессионалом.Размер вашей системы воздуховодов может существенно повлиять на комфорт вашего дома, а также на сумму, которую вы тратите каждый месяц на обогрев или охлаждение дома. Установки HVAC представляют собой самую большую часть энергопотребления вашего дома, поэтому получение правильных цифр является обязательным условием, чтобы сэкономить как можно больше денег на счетах за коммунальные услуги.

Калькулятор площади поверхности

Используйте калькуляторы ниже, чтобы вычислить площадь поверхности нескольких распространенных форм.

Площадь поверхности шара


Площадь поверхности конуса


Площадь поверхности куба


Площадь поверхности цилиндрического резервуара


Площадь прямоугольного резервуара


Площадь поверхности капсулы


Площадь поверхности крышки

Для расчета укажите любые два значения ниже.


Площадь поверхности конической усадки


Площадь поверхности эллипсоида


Площадь квадратной пирамиды


Калькулятор связанных объемов | Калькулятор площади | Калькулятор площади поверхности тела

Площадь поверхности твердого тела - это мера общей площади, занимаемой поверхностью объекта.Все объекты, рассматриваемые в этом калькуляторе, более подробно описаны на страницах «Калькулятор объема» и «Калькулятор площади». Таким образом, этот калькулятор будет сосредоточен на уравнениях для расчета площади поверхности объектов и использовании этих уравнений. Пожалуйста, обратитесь к вышеупомянутым калькуляторам для более подробной информации по каждому отдельному объекту.

Сфера

Площадь поверхности (SA) сферы можно рассчитать с помощью уравнения:

SA = 4πr 2
где r - радиус

Ксаэль не любит ни с кем делиться шоколадными трюфелями.Когда она получает коробку трюфелей Lindt, она приступает к вычислению площади поверхности каждого трюфеля, чтобы определить общую площадь поверхности, которую она должна лизать, чтобы уменьшить вероятность того, что кто-то попытается съесть ее трюфели. Учитывая, что каждый трюфель имеет радиус 0,325 дюйма:

SA = 4 × π × 0,325 2 = 1,327 дюйма 2

Конус

Площадь поверхности круглого конуса может быть вычислена путем суммирования площадей поверхности каждого из его отдельных компонентов.«Базовая SA» относится к кругу, который включает основание в замкнутом круговом конусе, в то время как боковая SA относится к остальной части конуса между основанием и его вершиной. Уравнения для расчета каждого из них, а также общая SA замкнутого кругового конуса показаны ниже:

основание SA = πr 2
боковая SA = πr√r 2 + h 2
общая SA = πr (r + √r 2 + h 2 )
где r - радиус, а h - высота

Афина недавно проявила интерес к культуре Юго-Восточной Азии и особенно увлеклась конической шляпой, обычно называемой «рисовой шляпой», которая широко используется в ряде стран Юго-Восточной Азии.Она решает сделать свое собственное и, будучи очень практичным человеком, не погрязшим в сентиментальности, достает свадебное платье своей матери из темных уголков гардероба, в котором оно находится. Она определяет площадь поверхности материала, которая нужна ей для создания шляпы, радиусом 1 фут и высотой 0,5 фута следующим образом:

боковой SA = π × 0,4√0,4 2 + 0,5 2 = 0,805 фута 2

Куб

Площадь поверхности куба может быть вычислена путем суммирования общих площадей его шести квадратных граней:

SA = 6a 2
где a - длина кромки

Энн хочет подарить своему младшему брату кубик Рубика на его день рождения, но знает, что у ее брата мало внимания и он легко расстраивается.Она заказывает кубик Рубика, у которого все грани черные, и должна платить за настройку в зависимости от площади поверхности куба с длиной ребра 4 дюйма.

SA = 6 × 4 2 = 96 дюймов 2

Цилиндрический бак

Площадь поверхности закрытого цилиндра может быть вычислена путем суммирования общих площадей его основания и боковой поверхности:

база SA = 2πr 2
боковой SA = 2πrh
общая SA = 2πr (r + h) где r - радиус, а h - высота

У Джереми есть большой цилиндрический аквариум, в котором он купается, потому что он не любит душ или ванну.Ему любопытно, остывает ли его нагретая вода быстрее, чем в ванне, и ему нужно рассчитать площадь поверхности его цилиндрического резервуара высотой 5,5 футов и радиусом 3,5 футов.

общая SA = 2π × 3,5 (3,5 + 5,5) = 197,920 футов 2

Прямоугольный резервуар

Площадь прямоугольного резервуара равна сумме площадей каждой из его граней:

SA = 2lw + 2lh + 2wh
где l - длина, w - ширина и h - высота

Банан, старшая дочь в длинной череде фермеров, выращивающих бананы, хочет преподать своей испорченной гнилой младшей сестре Банановый хлеб урок о надеждах и ожиданиях.Banana-Bread всю неделю настаивает на том, чтобы ей нужен новый набор ящиков для размещения ее новых фигурок Бэтмена. Таким образом, Банана покупает ей большой кукольный домик Барби с кухонной утварью ограниченного выпуска, духовкой, фартуком и реалистичными гниющими бананами для Бэтмена. Она упаковывает их в прямоугольную коробку таких же размеров, как выдвижной ящик, который хочет Banana-Bread, и ей нужно определить количество оберточной бумаги, которое ей нужно, чтобы завершить презентацию подарка - сюрприз размером 3 × 4 × 5 футов:

SA = (2 × 3 × 4) + (2 × 4 × 5) + (2 × 3 × 5) = 94 футов 2

Капсула

Площадь поверхности капсулы может быть определена путем комбинирования уравнений площади поверхности для сферы и площади боковой поверхности цилиндра.Обратите внимание, что площадь поверхности оснований цилиндра не включена, поскольку она не составляет часть площади поверхности капсулы. Общая площадь рассчитывается следующим образом:

SA = 4πr 2 + 2πrh
где r - радиус, а h - высота

Горацио производит плацебо, которое призвано оттачивать индивидуальность человека, критическое мышление и способность объективно и логично подходить к различным ситуациям.Он уже протестировал рынок и обнаружил, что подавляющее большинство выборочной совокупности не демонстрирует ни одного из этих качеств, и очень готовы купить его продукт, укрепляя свои позиции в

Triangle Calculator

Укажите 3 значения, включая хотя бы одну сторону в следующих 6 полях, и нажмите кнопку «Рассчитать». Если в качестве единицы измерения угла выбраны радианы, он может принимать такие значения, как пи / 2, пи / 4 и т. Д.

Треугольник - это многоугольник с тремя вершинами.Вершина - это точка, где встречаются две или более кривых, линий или ребер; в случае треугольника три вершины соединены тремя отрезками, называемыми ребрами. Треугольник обычно называют его вершинами. Следовательно, треугольник с вершинами a, b и c обычно обозначается как Δabc. Кроме того, треугольники, как правило, описываются на основе длины их сторон, а также их внутренних углов. Например, треугольник, в котором все три стороны имеют равную длину, называется равносторонним треугольником, а треугольник, в котором две стороны имеют равную длину, называется равнобедренным.Когда ни одна из сторон треугольника не имеет одинаковой длины, он называется разносторонним, как показано ниже.

Отметки на краю треугольника - это обычное обозначение, которое отражает длину стороны, где одинаковое количество отметок означает одинаковую длину. Аналогичные обозначения существуют для внутренних углов треугольника, которые обозначаются разным количеством концентрических дуг, расположенных в вершинах треугольника. Как видно из треугольников выше, длина и внутренние углы треугольника напрямую связаны, поэтому логично, что равносторонний треугольник имеет три равных внутренних угла и три стороны равной длины.Обратите внимание, что треугольник, представленный в калькуляторе, не показан в масштабе; хотя он выглядит равносторонним (и имеет отметки угла, которые обычно воспринимаются как равные), он не обязательно является равносторонним и представляет собой просто треугольник. Когда введены фактические значения, выходные данные калькулятора будут отражать то, как должна выглядеть форма входного треугольника.

Треугольники, классифицируемые на основе их внутренних углов, делятся на две категории: прямые и наклонные. Прямоугольный треугольник - это треугольник, в котором один из углов равен 90 °, и обозначается двумя отрезками прямой, образующими квадрат в вершине, составляющей прямой угол.Самый длинный край прямоугольного треугольника, противоположный прямому углу, называется гипотенузой. Любой треугольник, который не является прямоугольным, классифицируется как наклонный треугольник и может быть тупым или острым. В тупоугольном треугольнике один из углов больше 90 °, а в остром треугольнике все углы меньше 90 °, как показано ниже.

Факты, теоремы и законы треугольника

  • Учитывая длины всех трех сторон любого треугольника, каждый угол можно вычислить с помощью следующего уравнения.Обратитесь к треугольнику выше, предполагая, что a, b и c - известные значения.

Площадь треугольника

Существует несколько различных уравнений для вычисления площади треугольника в зависимости от того, какая информация известна. Вероятно, наиболее известное уравнение для вычисления площади треугольника включает его основание, b , и высоту, h . «Основание» относится к любой стороне треугольника, где высота представлена ​​длиной отрезка линии, проведенного от вершины, противоположной основанию, до точки на основании, образующей перпендикуляр.

Учитывая длину двух сторон и угол между ними, следующую формулу можно использовать для определения площади треугольника. Обратите внимание, что используемые переменные относятся к треугольнику, показанному на калькуляторе выше. Для a = 9, b = 7 и C = 30 °:

Другой метод вычисления площади треугольника основан на формуле Герона. В отличие от предыдущих уравнений, формула Герона не требует произвольного выбора стороны в качестве основания или вершины в качестве начала координат.Однако для этого требуется, чтобы длина трех сторон была известна. Опять же, со ссылкой на треугольник, представленный в калькуляторе, если a = 3, b = 4 и c = 5:

Медиана, внутренний радиус и окружной радиус

Медиана

Медиана треугольника определяется как длина отрезка прямой, который проходит от вершины треугольника до середины противоположной стороны. Треугольник может иметь три медианы, каждая из которых будет пересекаться в центре тяжести (среднее арифметическое положение всех точек в треугольнике) треугольника.См. Рисунок ниже для пояснения.

Медианы треугольника представлены отрезками m a , m b и m c . Длину каждой медианы можно рассчитать следующим образом:

Где a, b и c обозначают длину стороны треугольника, как показано на рисунке выше.

В качестве примера, учитывая, что a = 2, b = 3 и c = 4, медиана m a может быть вычислена следующим образом:

Inradius

Inradius - это радиус наибольшего круга, который может поместиться внутри данного многоугольника, в данном случае треугольника.Внутренний радиус перпендикулярен каждой стороне многоугольника. В треугольнике внутренний радиус можно определить, построив две биссектрисы угла, чтобы определить центр треугольника. Внутренний радиус - это перпендикулярное расстояние между центром вращения и одной из сторон треугольника. Можно использовать любую сторону треугольника, если определено перпендикулярное расстояние между стороной и центром, поскольку центр, по определению, находится на равном расстоянии от каждой стороны треугольника.

В данном калькуляторе внутренний радиус рассчитывается с использованием площади (Area) и полупериметра (ов) треугольника по следующим формулам:

где a, b и c - стороны треугольника

.

Окружной радиус

Радиус описанной окружности определяется как радиус окружности, проходящей через все вершины многоугольника, в данном случае треугольника.Центр этой окружности, где пересекаются все срединные перпендикуляры каждой стороны треугольника, является центром описанной окружности и точкой, от которой измеряется радиус описанной окружности. Центр описанной окружности треугольника не обязательно должен находиться внутри треугольника. Стоит отметить, что у всех треугольников есть описанная окружность (окружность, проходящая через каждую вершину), и, следовательно, радиус описанной окружности.

В данном калькуляторе радиус описанной окружности рассчитывается по следующей формуле:

Где a - сторона треугольника, а A - угол, противоположный стороне a

Хотя используются сторона a и угол A, в формуле можно использовать любую из сторон и их соответствующие противоположные углы.

Калькулятор плотности воздуха

- Что такое плотность воздуха?

Определение плотности воздуха - какова формула плотности воздуха?

Основное определение плотности воздуха очень похоже на общее определение плотности. Он говорит нам, сколько весит определенный объем воздуха. Мы можем выразить это следующей формулой плотности воздуха:

ρ = масса воздуха / объем

Из приведенного выше уравнения можно предположить, что плотность воздуха является постоянной величиной, которая описывает определенное свойство газа.Однако плотность каждого вещества (твердых тел, жидкостей, газов) зависит, сильнее или слабее, не только от химического состава вещества , но также от внешних условий , таких как давление и температура.

Из-за этих зависимостей и того факта, что атмосфера Земли содержит различные газы (в основном азот, кислород, аргон и водяной пар ), определение плотности воздуха требует дальнейшего расширения. В наш калькулятор плотности воздуха была внесена соответствующая модификация: формула плотности воздуха указана в разделе «Как рассчитать плотность воздуха?».

Кстати, хотелось бы поднять интересный момент. Что вы думаете? Влажный воздух тяжелее или легче сухого? Правильный ответ может быть не таким интуитивным, как вы думаете вначале. Фактически, чем больше водяного пара мы добавляем в воздух, тем менее плотным он становится! Вам может быть трудно в это поверить, но мы попытаемся убедить вас несколькими логическими аргументами.

Прежде всего, нам нужно сослаться на закон Авогадро , который гласит, что

равные объемы всех газов, при одинаковой температуре и давлении, имеют одинаковое количество молекул.

Представьте, что вы помещаете сухой воздух в контейнер с фиксированным объемом, температурой и давлением. Совершенно сухой воздух состоит из:

  • 78% молекул азота N₂ , который имеет два атома N с атомным весом 14 u (общий вес 28 u),
  • 21% молекул кислорода O₂ , который имеет два атома O с атомной массой 16 u (общий вес 32 u), и
  • 1% молекул аргона Ar ( Ar имеет один атом с атомной массой 39.8 ед).

Обратите внимание, что каждая указанная молекула тяжелее или равна 18 ед. Теперь добавим несколько молекул водяного пара в газ с общим атомным весом 18 u ( H₂O - два атома водорода 1 u и один кислород 16 u). Согласно закону Авогадро, общее количество молекул в емкости остается неизменным при одинаковых условиях (объем, давление, температура). Это означает, что молекул водяного пара должны заменить азота, кислорода или аргона. Поскольку молекулы H₂O легче других газов, общая масса газа уменьшается, что приводит к уменьшению плотности воздуха.

Калькулятор кругов

Форма круга


r = радиус
d = диаметр
C = окружность
A = площадь
π = пи = 3,1415926535898
√ = квадратный корень

Использование калькулятора

Используйте этот калькулятор окружности, чтобы найти площадь, длину окружности, радиус или диаметр окружности.Учитывая любую одну переменную A, C, r или d круга, вы можете вычислить три других неизвестных.

Единицы: Обратите внимание, что единицы длины показаны для удобства. Они не влияют на расчеты. Единицы измерения указывают на порядок результатов, например футы, футы 2 или футы 3 . Можно заменить любой другой базовый блок.

Формулы окружности в терминах Pi π, радиуса r и диаметра d

Радиус и диаметр:

г = д / 2
д = 2р

Площадь круга:

A = πr 2 = πd 2 /4

Окружность круга:

С = 2πr = πd

Расчет круга:

Используя приведенные выше формулы и дополнительные формулы, вы можете вычислить свойства данного круга для любой данной переменной.2 \]

\ [C = 2 \ pi r \]

\ [d = 2r \]

Вычислить r, C и d | Учитывая A
Зная площадь круга, вычислите радиус, длину окружности и диаметр. Положив r, C и d через A, получим следующие уравнения:

\ [r = \ sqrt {\ frac {A} {\ pi}} \]

\ [C = 2 \ pi r = 2 \ pi \ sqrt {\ frac {A} {\ pi}} \]

\ [d = 2r = 2 \ sqrt {\ frac {A} {\ pi}} \]

Вычислить A, r и d | Учитывая C
По длине окружности вычислите радиус, площадь и диаметр.2} {4} \]

\ [C = 2 \ pi r = 2 \ pi \ frac {d} {2} = \ pi d \]

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх