Теплопроводность воздушной прослойки: Теплопроводность воздушной прослойки. Таблицы и выводы

Содержание

Теплопроводность воздуха при различных температурах. Таблицы

Сама по себе теплопроводность воздуха, как и любых других газов и их смесей, является не постоянной величиной, а находится в зависимости от различных макропараметров. В рамках этой статьи мы рассмотрим зависимость значений теплопроводности воздуха λ от температуры при нормальном, низком и высоком атмосферном давлении.

Обратите внимание:  мы отдельно разбирали формулы теплопроводности воздушной прослойки, необходимые для расчета ограждающих конструкций. Тогда мы обсуждали влияние на передачу воздухом тепла не только теплопроводности, но и конвекционной и отражающей способности воздуха.

Сегодня же речь пойдет именно о зависимости теплопроводности воздуха от температуры при различном атмосферном давлении. Величина коэффициента теплопроводности воздуха необходима при расчетах теплообмена и входит в состав чисел подобия. Таких, например, как число Прандтля, Нуссельта, Био.

Значения теплопроводности воздуха при разных температурах и давлении сведены в несколько таблиц, которые мы сегодня для Вас и публикуем. Обратите внимание! Значения представлены при идеальных пропорциях составляющих воздух газов. То есть

  • кислород — 20,95% по объёму и 23,20% по весу;
  • азот — 78,09% и 75,47%, соответственно;
  • углекислый газ — 0,03% и 0,046%;
  • водород, аргон, криптон и другие газы — в ничтожных количествах

Таблица теплопроводности газообразного воздуха в интервале температуры -183 до 1200°С при нормальном атмосферном давлении

Теплопроводность λ в текущей таблице выражена в размерности Вт/(м·град). Чем больше значение λ, тем хуже теплоизоляционные свойства материала.

Поскольку это требуется чаще всего, отдельно обращаем внимание на значение теплопроводности воздуха при температуре 20°С и нормальном атмосферном давлении. При этих условиях теплопроводность воздуха равна 0,0259 Вт/(м·град).

t, °С λ, Вт/(м·град)
-183 0,0084
-173 0,0093
-163 0,0102
-153 0,0111
-143 0,012
-133 0,0129
-123 0,0138
-113 0,0147
-103 0,0155
-93 0,0164
-83 0,0172
-73 0,018
-50 0,0204
-40 0,0212
-30 0,022
-20 0,0228
-10 0,0236
0 0,0244
10 0,0251
20
0,0259
30 0,0267
40 0,0276
50 0,0283
60 0,029
70 0,0296
80 0,0305
90 0,0313
100 0,0321
110 0,0328
120 0,0334
130 0,0342
140 0,0349
150 0,0357
160 0,0364
170 0,0371
180 0,0378
190 0,0386
200 0,0393
250 0,0427
300 0,046
350 0,0491
400 0,0521
450 0,0548
500 0,0574
550 0,0598
600 0,0622
650 0,0647
700 0,0671
750 0,0695
800 0,0718
850 0,0741
900 0,0763
950 0,0785
1000 0,0807
1100 0,085
1200 0,0915

Некоторые выводы и замечания по таблице

При низких отрицательных температурах охлажденный воздух имеет малую теплопроводность. Так, при температуре минус 183°С, она составляет всего 0,0084 Вт/(м·град).

А с ростом температуры теплопроводность воздуха тоже увеличивается. Так, при увеличении температуры с 20 до 1200°С, величина теплопроводности воздуха возрастает с 0,0259 до 0,0915 Вт/(м·град), то есть более чем в 3,5 раза!

Таблица значений теплопроводности воздуха от температуры в градусах Кельвина

Если в Вашей задачи температура выражена в градусах не по Цельсию, а по Кельвину, можете воспользоваться данными из этой таблицы. Обратите внимание на размерность значений — 10

–2 !

Данные даны также при P = 1 атм.

t, °C λ, 10–2 Вт/(м∙К)
–173 0,922
–143 1,204
–113 1,404
–83 1,741
–53 1,983
–23 2,207
–3 2,348
0,1 2,370
7 2,417
17 2,485
27 2,553
37 2,621
67
2,836
97 3,026

 

Таблица теплопроводности воздуха в жидком и газообразном состояниях при низких температурах и давлении до 1000 бар

Теперь давайте посмотрим на значения теплопроводности воздуха при низких температурах и давлении до 1000 бар.

Теплопроводность выражена в Вт/(м·град), интервал температуры от 75 до 300К (от -198 до 27°С).

Черта под значениями в таблице означает переход жидкого воздуха в газ: цифры под чертой относятся к газу, а выше ее — к жидкости.

Смена агрегатного состояния воздуха существенно сказывается на значении коэффициента теплопроводности — теплопроводность жидкого воздуха значительно выше.

Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

 

 

Обратите внимание!

Величина теплопроводности воздуха в газообразном состоянии с ростом давления и температуры увеличивается, а вот в жидком состоянии — наоборот, снижается. То есть, в сжиженном состоянии воздух с ростом температуры имеет тенденцию к снижению коэффициента теплопроводности.

Таблица теплопроводности газообразного воздуха при температуре от 300 до 800К и различном давлении

В таблице приведены значения теплопроводности воздуха при различных температурах в зависимости от давления от 1 до 1000 бар.

Теплопроводность выражена в Вт/(м·град), интервал температуры от 300 до 800К (от 27 до 527°С).

Будьте внимательны! Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

По данным таблицы видно, что с ростом температуры и давления теплопроводность воздуха увеличивается.

Теплопроводность воздуха при высоких температурах и давлении от 0,001 до 100 бар

В таблице приведены значения теплопроводности воздуха при высоких температурах и давлении от 0,001 до 1000 бар.

Теплопроводность выражена в Вт/(м·град), интервал температуры от 1500 до 6000К (от 1227 до 5727°С).

Будьте внимательны! Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

С ростом температуры молекулы воздуха диссоциируют и максимальное значение его теплопроводности достигается при давлении (разряжении) 0,001 атм. и температуре 5000К.

Термическое сопротивление и коэффициенты диффузионного сопротивления строительных материалов | Строительная физика | Строительное проектирование

Коэффициент теплопроводности λ ккал/ (м • ч • °С) Нумерация Материал Объёмная масса, кг/ м3 Термическое сопротивление,м2 • ч • град/ (см •ккал)
Ориентировочные значения диффузионного сопротивления μ
1. ЕСТЕСТВЕННЫЕ КАМНИ И ГРУНТ
1.1. Естественные камни, растительный грунт
3 1.11 Плотные естественные камни (мрамор, гранит и т.д.)   0,003 пароизоляция
2 1.12 Пористые естественные камни(песчаник, ракушечник, конгломерат и др.)   0,005 10
1,2 1. 13 Песок и гравийный песок естественной влажности 1800 0,0083 2
1,8 1.14 Связной грунт естественной влажности 1700 0,0056 2
1.2. Суглинок
0,8 1.21 Плотный суглинок и блоки из него 2100 0,0125 10
0,6 1.22 Солома с глиной 1700 0,0166 4
0,4 1.23 Лёгкий суглинок 1200 0,025 4
0,4 1.24 Жердь, обмотанная соломой с глиняной обмазкой 1600 0,025 4
1.3. Сухие заполнители перекрытий и других конструкций
0,5 1.31 Песок 1300 0,02 2
0,7 1.32 Гравий, мелкий щебень 1500 0,014 2
0,16 1. 33 Пемзовый гравий 900 0,0625 2
0,16 1.34 Каменноугольный шлак 700 0,0625 2
0,12 1.35 Доменный шлак 1000 0,0835 2
0,35 1.36 Кирпичный бой   0,0286 2
2. РАСТВОРЫ И БЕТОНЫ
2.1. Штукатурка (внутренняя и наружная), бесшовные полы, растворные швы
  2.11 Известковый раствор, раствор на гидравлической извести 1700    
0,75 Известково-цементный раствор 1900 0,0133 10
1,2 2.12 Цементный раствор 2100 0,0084 15
  2.13 Гипсовый раствор, чистый гипс, известково-гипсовый раствор 1200    
0,6 Ангидритовый раствор 1700 0,0166 6
2. 2. Тяжёлые и лёгкие бетоны (в бесшовных конструкциях и большеразмерных плитах)
Бетон на гравии и мелком щебне с плотной структурой
1,3 2.21 Бетоны марок В ≤ 120 2200 0,0077 20
1,75 Бетоны марок В ≤ 160 2400 0,0057 35*
0,65 2.22 Бетон на кирпичном щебне с плотной структурой 1600 0,0153 9
0,8 1800 0,0125 12
0,9 2.23 Железобетон на кирпичном щебне 2000 0,0111 18
0,55 2.24 Бетон с пористым заполнителем 1500 0,0182 3
0,7 Бетон с непористым заполнителем, например, гравием 1700 0,0143 4
0,95 1900 0,0105 6
0,4 2. 25 Бетон на кирпичном щебне 1200 0,025 3
0,5 Бетон на доменном шлаке 1400 0,02 4
0,65 Бетон на пористом шлаке 1600 0,0154 6
0,25 2.26 Пемзобетон, керамзитобетон и бетон на вспененном или гранулированном доменном шлаке 800 0,04 2,5
0,3 1000 0,033 6
0,4 1200 0,025 10
0,12 2.27 Газо- и пенобетон с паропрогревом, лёгкий известковый бетон 400 0,0835 2,5
0,16 500 0,0625 3
0,2 600 0,05 3,5
0,25 800 0,04 6,5
0,3 1000 0,033 10
0,35 2. 28 Деревобетон 80 0,0286 3
0,45 1000 0,0222 3,5
2.3. Бетонные и гипсовые плиты
0,3 2.31 Асбестоцементные плиты прессованные и непресованные 1800 0,033 34
0,3 2.32 Стеновые блоки из лёгкого бетона (DIN 18162) 2200 0,033 34
0,25 2.321 Сборные плиты из естественной пемзы 800 0,04 2,2
0,3 2.322 Панели из керамзито- и пенобетона 1000 0,033 5
0,4 2.323 Шлакабетонные блоки 1200 0,025 10
0,5 2.324 Панели из бетона на спекшейся пемзе, кирпичном щебне, туфе, легкобетонные панели на смешанном заполнителе 1400 0,02 10
2. 33. Гипсовые панели (DIN 18163)
0,25 2.331 Пористый гипс 600 0,04 2
0,28 700 0,036 2
0,35 2.332 Гипс с наполнителем, пустотами или порами 900 0,029 3,5
0,4 2.333 Гипс (гипсовые панели) 1000 0,025 6
0,5 1200 0,2 6
0,5 2.334 Гипс со смешанным заполнителем 1200 0,2 6
0,18 2.34 Гипсовые плиты с двусторонней картонной обшивкой толщиной до 15 мм 1200 0,056 6
2.4. Кладка из бетонных камней (включая растворные швы)
  2. 41 Силикатный кирпич (DIN106, ч.1)
0,9 2.411 Твёрдый силикатный кирпич > 1800 0,011 30
0,9 2.412 Полнотелый силикатный кирпич > 1800 0,011 30
0,85 1800 0,0118 30
0,6 2.413 Дырчатый силикатный кирпич 1200 0,0209 5
0,48 1440 0,0167 7
0,48 2.414 Пустотелые силикатные блоки 1000 0,0232 3,5
0,43 1200 0,0209 5
0,6 2.42 Керамзитовые блоки (DIN 398)
0,75 2. 421 Керамзитовые блоки марок HS100 и HS150 1800 0,0167 10
0,35 2.422 Керамзитовые блоки марки HHS 1800 0,0133 15
0,4 2.43 Легкобетонные полнотелые блоки (DIN 18152) 1000 0,025 3,5
0,45 1200 0,0222 5
0,55 1400 0,0182 6,5
0,68 1600 0,0147 9
  2.44 Легкобетонные пустотелые блоки (DIN 18151)
0,38 2.441 Двухкамерные блоки 1000* 0,0263 2
0,42 1200* 0,0238 2,5
0,48 1400* 0,0209 3,5
0,42 2. 442 Трёхкамерные блоки 1400* 0,0238 3,5
0,48 1800* 0,0209 4,5
0,3 2.45 Газо- и пенобетонные блоки (DIN 4165) и лёгкие известково-бетонные блоки с паропрогревом 600 0,0333 3,5
0,35 800 0,025 10
0,4 1000 0,025 10
0,38 2.46 То же, с твердением на воздухе 800 0,0263 6
0,48 1000 0,0209 10
0,6 1200 0,0167 16
0,38 2.47 Блоки из деревобетона 800 0,0263 3
0,48 1000 0,0208 3,5
3. КИРПИЧ И ПЛИТКА
3.1. Кладка из кирпича (DIN 105), включая растворные швы
0,9 3.11 Клинкер для надземных сооружений ≥ 1900 0,011 20
0,68 3.12 Клинкер с вертикальными пустотами 0,0147 20
0,4 3.13 Полнотелый кирпич, облицовочный кирпич 1000 0,025 3,5
0,45 1200 0,022 4,5
0,52 1400 0,0192 6
0,68 1800 0,0147 10
0,4 3.14 Дырчатый кирпич, дырчатый облицовочный кирпич 1000 0,025 3,5
0,45 1200 0,022 4,5
0,52 1400 0,0192 6
0,9 3. 2 Керамическая плитка 2000 0,011 200
4. СТЕКЛО
0,7 4,1 Листовое стекло (оконное, среднее значение)   0,0142
5. МЕТАЛЛЫ
50 5.1 Чугун и сталь   0,0002
330 5.2 Медь   0,00003
55 5.3 Бронза, медное литьё   0,00018
175 5.4 Аллюминий   9000000
6. ДРЕВЕСИНА, ВЫСУШЕННАЯ НА ВОЗДУХЕ (DIN 4074)
0,18 6.1 Дуб 800 0,056 100
0,15 6.2 Бук 800 0,067 80
0,12 6.3 Ель, сосна, пихта 600 0,083 110
0,12 6. 4 Клееная фанера 600 0,083 100
7. ИСКУССТВЕННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ
0,16 7.1 Линолеум 1200 0,062 пароизоляция
  7.2 Ксилолитовые и аналогичные покрытия (DIN 272)
0,4 7.21 Подготовка и нижний слой двухслойных полов 1800 0,025 пароизоляция
0,6 7.22 Промышленные полы и ходовой слой 2200 0,016 пароизоляция
8. БИТУМНЫЕ МАТЕРИАЛЫ
0,6 8.1 Асфальт 2100 0,017 пароизоляция
0,15 8.2 Битумы 1050 0,067 пароизоляция
0,16 8.3 Кровельный картон 1100 0,063 пароизоляция
9. ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
0,035** 9.1 Минеральные волокнистые теплоизоляционные материалы (стекло-, каменно-, шлаковолокнистые, DIN 18165) 30 – 200 0,286** 1,4
0,04** 9.2 Растительные волокнистые теплоизоляционные материалы (из морской травы, кокосовые, древесные, торфоволокнистые, DIN 18165) 30 – 200 0,25** 2
0,06 9.3 Строительная шлаковата без наполнителя   0,167 1,4
0,12 9.4 Лёгкие плиты из древесной шерсти (DIN 1101) толщиной 15 мм 570 0,083 11
0,08 То же, толщиной 25 и 35 мм 460/ 415 0,125 6,5
0,07 То же, толщиной 50 мм и более 390/ 360 0,14 4
0,04 9. 5 Древесно-волокнистые плиты 200 0,2 3
0,05 300 0,2 3
0,035 9.6 Пробковые плиты 120 0,286 30
0,038 160 0,63 30
0,04 200 0,25 30
0,055 9.7 Паркет из пробковых плит 450 0,182  
0,04 9.8 Плиты из волокнистого картона с пропиткой битумом 55 0,25 пароизоляция
0,035 9.9 Вспененная синтетическая смола в виде брусков и хлопьев   0,286   
0,035* Стипорол типа 1 13 и более 0,286** 25
0,035 Стипорол типа 2 16 и более 0,286 33
0,035 Стипорол типа 3 20 и более 0,286 42
Стипорол типа 4 25 и более 0,286 50
Коэффициент теплопроводности λ ккал/ (м • ч • °С) Нумерация Материал Объёмная масса, кг/ м3 Термическое сопротивление,м2 • ч • град/ (см •ккал) Ориентировочные значения диффузионного сопротивления μ

Теплопроводность строительных материалов – основные понятия, табличные значения, расчеты

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении  влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещенияОтносительная влажность внутреннего воздуха при температуре:
до 12°Сот 13 до 24°С 25°С и выше
Сухойдо 60%до 50%до 40%
Нормальныйот 61 до 75%от 51 до 60%от 41 до 50%
Влажный 76% и более от 61 до 75%от 51 до 60%
Мокрый76% и более61% и более

Кстати, о влажности!..

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице)Зоны влажности (в соотвествии с картой-схемой)
3 – сухая2 – нормальная1 – влажная
СухойААБ
НормальныйАББ
Влажный или мокрыйБББ

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum— суммарное термическое сопротивление ограждающей конструкции;

 R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрахВ и Г ▲Г▼
tв > 0 ℃tв > 0 ℃
0.010.130.150.140.15
0.020.140.150.150.19
0.030.140.160.160.21
0.050.140.170.170.22
0.10.150.180.180.23
0.150.150.180.190.24
0,2-0,30.150.190.190.24
Примечания:
В и Г ▲ – воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх
Г▼ – воздушная прослойка горизонтальная при распространении тепла сверху вниз
tв > 0 ℃ – положительная температура воздуха в прослойке
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим.

Таблицы коэффициентов теплопроводности различных групп строительных материалов

Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материалаρ
Средняя плотность материала
кг/м³
λ₀
Коэффициент теплопроводности в идеальных условиях и в сухом состоянии
Вт/(м×℃)
λА
Коэффициент теплопроводности для условий эксплуатации А
Вт/(м×℃)
λБ
Коэффициент теплопроводности для условий эксплуатации Б
Вт/(м×℃)
Кирпичная кладка из сплошного кирпича на различных растворах
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе18000,560,700,81
Стандартный керамический на цементно-шлаковом растворе17000,520,640,76
Стандартный керамический на цементно-перлитовом растворе16000,470,580,70
Силикатный на цементно-песчаном кладочном растворе18000,700,760,87
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе12000,350,470,52
– то же, но с плотностью10000,290,410,47
Шлаковый, на цементно-песчаном кладочном растворе15000,520,640,70
Кладка из пустотного кирпича
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе16000,470,580,64
– то же, но с плотностью кирпича 1300 кг/м³14000,410,520,58
– то же, но с плотностью кирпича 1000 кг/м³12000,350,470,52
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе15000,640,700,81
– то же, четырнадцатипустотный14000,520,640,76
Кладка или облицовка поверхностей натуральным камнем
Гранит или базальт28003,493,493,49
Мрамор28002,912,912,91
Туф20000,760,931,05
– то же, но с плотностью18000,560,700,81
– то же, но с плотностью16000,410,520,64
– то же, но с плотностью14000,330,430,52
– то же, но с плотностью12000,270,350,41
– то же, но с плотностью10000,210,240,29
Известняк20000,931,161,28
– то же, но с плотностью18000,700,931,05
– то же, но с плотностью16000,580,730,81
– то же, но с плотностью14000,490,560,58
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Бетоны на плотном заполнителе
Железобетон25001.691.922.04
Бетон на натуральном гравии или щебне24001.511.741.86
Бетоны на натуральных пористых заполнителях
Пемзобетон16000.520.60.68
– то же, но с плотностью14000.420.490.54
– то же, но с плотностью12000.340.40.43
– то же, но с плотностью10000.260.30.34
– то же, но с плотностью8000.190.220.26
Туфобетон18000.640.870.99
– то же, но с плотностью16000.520.70.81
– то же, но с плотностью14000.410.520.58
– то же, но с плотностью12000.290.410.47
Бетон на вулканическом шлаке16000.520.640.7
– то же, но с плотностью14000.410.520.58
– то же, но с плотностью12000.330.410.47
– то же, но с плотностью10000.240.290.35
– то же, но с плотностью800200.230.29
Бетоны на искусственных пористых наполнителях
Керамзитобетон на кварцевом песке с поризацией12000.410.520.58
– то же, но с плотностью10000.330.410.47
– то же, но с плотностью8000.230.290.35
Керамзитобетон на керамзитовом песке или керамзитопенобетон1800660.80.92
– то же, но с плотностью16000.580.670.79
– то же, но с плотностью14000.470.560.65
– то же, но с плотностью12000.360.440.52
– то же, но с плотностью10000.270.330.41
– то же, но с плотностью8000.210.240.31
– то же, но с плотностью6000.160.20.26
– то же, но с плотностью5000.140.170.23
Керамзитобетон на перлитовом песке10000.280.350.41
– то же, но с плотностью8000.220.290.35
Перлитобетон12000.290.440.5
– то же, но с плотностью10000.220.330.38
– то же, но с плотностью8000.160.270.33
– то же, но с плотностью6000.120.190.23
Шлакопемзобетон18000.520.630.76
– то же, но с плотностью16000.410.520.63
– то же, но с плотностью14000.350.440.52
– то же, но с плотностью12000.290.370.44
– то же, но с плотностью10000.230.310.37
Шлакопемзопено и шлакопемзогазобетон16000.470.630.7
– то же, но с плотностью14000.350.520.58
– то же, но с плотностью12000.290.410.47
– то же, но с плотностью10000.230.350.41
– то же, но с плотностью8000.170.290.35
Вермикулетобетон8000.210.230.26
– то же, но с плотностью6000.140.160.17
– то же, но с плотностью4000.090.110.13
– то же, но с плотностью3000.080.090.11
Ячеистые бетоны
Газобетон, пенобетон, газосиликат, пеносиликат10000.290.410.47
– то же, но с плотностью8000.210.330.37
– то же, но с плотностью6000.140.220.26
– то же, но с плотностью4000.110.140.15
– то же, но с плотностью3000.080.110.13
Газозолобетон, пенозолобетон12000.290.520.58
– то же, но с плотностью10000.230.440.59
– то же, но с плотностью8000.170.350.41
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Обычный цементно-песчаный раствор18000.580.760.93
Сложный раствор из цемента, песка, извести17000.520.70.87
Цементно-шлаковый раствор14000.410.520.64
Цементно-перлитовый раствор10000.210.260.3
– то же, но с плотностью8000.160.210.26
Известково-песчаный раствор16000.470.70.81
– то же, но с плотностью12000.350.470.58
Гипсово-перлитовый раствор6000.140.190.23
Гипсово-перлитовый поризованный раствор5000.120.150.19
– то же, но с плотностью4000.090.130.15
Гипсовые плиты литые конструкционные12000.350.410.47
– то же, но с плотностью10000.230.290.35
Листы гипсокартона (сухая штукатурка)8000.150.190.21
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Хвойная древесина (сосна иди ель) поперек волокон 5000,090,140,18
– они же — вдоль волокон5000,180,290,35
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон 7000,10,180,23
– они же — вдоль волокон7000,230,350,41
Клееная фанера6000,120,150,18
Облицовочный картон10000,180,210,23
Картон строительный многослойный 6500,130,150,18
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП)10000,150,230,29
– то же, но для плотности8000,130,190,23
– то же, но для плотности6000,110,130,16
– то же, но для плотности4000,080,110,13
– то же, но для плотности2000,060,070,08
Плиты фибролитовые, арболит на основе портландцемента8000,160,240,3
– то же, но для плотности6000,120,180,23
– то же, но для плотности4000,080,130,16
– то же, но для плотности3000,070,110,14
Плиты камышитовые3000,070,090,14
– то же, но для плотности2000,060,070,09
Плиты торфяные термоизоляционные 3000,0640,070,08
– то же, но для плотности2000,0520,060,064
Пакля строительная1500,050,060,07
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Минеральная вата, стекловата
Маты минеральной ваты прошивные или на синтетическом связующем 1250.0560.0640.07
– то же, но для плотности750.0520.060.064
– то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие 3500.0910.090.11
– то же, но для плотности3000.0840.0870.09
– то же, но для плотности2000.070.0760.08
– то же, но для плотности1000.0560.060.07
– то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости 2000.0640.070.076
Плиты из стеклянного штапельного волокна на синтетическом связующем 500.0560.060.064
Маты и полосы из стеклянного волокна прошивные 1500.0610.0640.07
Синтетические утеплители
Пенополистирол 1500.050.0520.06
– то же, но для плотности1000.0410.0410.052
– то же, но для плотности400.0380.0410.05
Пенопласт ПХВ-1 и ПВ-1 1250.0520.060.064
– то же, но для плотности100 и менее0.0410.050.052
Пенополиуретан плитный800.0410.050.05
– то же, но для плотности600.0350.0410.041
– то же, но для плотности400.0290.040.04
Пенополиуретан напылением350.0270.0330.035
Плиты из резольноформальдегидного пенопласта 1000.0470.0520.076
– то же, но для плотности750.0430.050.07
– то же, но для плотности500.0410.050.064
– то же, но для плотности400.0380.0410.06
Пенополиэтилен300.030.0320.035
Плиты из полиизоцианурата (PIR)350.0240.0280.031
Перлитопласт-бетон 2000.0410.0520.06
– то же, но для плотности1000.0350.0410.05
Перлитофосфогелевые изделия 3000.0760.080.12
– то же, но для плотности2000.0640.070.09
Каучук вспененный850.0350.040.045
Утеплители на натуральной основе
Эковата 600.0410.0540.062
– то же, но для плотности450.0380.050.055
– то же, но для плотности350.0350.0420.045
Пробка техническая500.0370.0430.048
Листы пробковые2200.0350.0410.045
Плиты льнокостричные термоизоляционные2500.0540.0620.071
Войлок строительный шерстяной3000.0570.0650.072
– то же, но для плотности1500.0450.0510.059
Древесные опилки4000.0921.051.12
– то же, но для плотности2000.0710.0780.085
Засыпки минеральные
Керамзит – гравий8000.180.210.23
– то же, но для плотности6000.140.170.2
– то же, но для плотности4000.120.130.14
– то же, но для плотности3000.1080.120.13
– то же, но для плотности2000.0990.110.12
Шунгизит – гравий8000.160.20.23
– то же, но для плотности6000.130.160.2
– то же, но для плотности4000.110.130.14
Щебень из доменного шлака, шлаковой пемзы и аглоперита 8000.180.210.26
– то же, но для плотности6000.150.180.21
– то же, но для плотности4001.1220.140.16
Щебень и песок из вспученного перлита 6000.110.1110.12
– то же, но для плотности4000.0760.0870.09
– то же, но для плотности2000.0640.0760.08
Вермикулит вспученный 2000.0760.090.11
– то же, но для плотности1000.0640.0760.08
Песок строительный сухой16000.350.470.58
Пеностекло или газостекло
Пеностекло или газо-стекло 4000.110.120.14
– то же, но для плотности3000.090.110.12
– то же, но для плотности2000.070.080.09
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Асбестоцементные
Листы асбестоцементные плоские («плоский шифер») 18000.350.470.52
– то же, но для плотности16000.230.350.41
На битумной основе
Битумы нефтяные строительные и кровельные 14000.270.270.27
– то же, но для плотности12000.220.220.22
– то же, но для плотности10000.170.170.17
Асфальтобетон 21001.051.051.05
Изделия из вспученного перлита на битумном связующем 4000.1110.120.13
– то же, но для плотности3000.0670.090.099
Рубероид, пергамин, толь, гибкая черепица6000.170.170.17
Линолеумы и наливные полимерные полы
Линолеум поливинилхлоридный многослойный 18000.380.380.38
– то же, но для плотности16000.330.330.33
Линолеум поливинилхлоридный на тканевой подоснове 18000.350.350.35
– то же, но для плотности16000.290.290.29
– то же, но для плотности14000.230.230.23
Пол наливной полиуретановый15000.320.320.32
Пол наливной эпоксидный14500.0290.0290.029
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Сталь, в том числе – арматурная стержневая7850585858
Чугун7200505050
Алюминий2600221221221
Медь 8500407407407
Бронза7500÷930025÷10525÷10525÷105
Латунь8100÷880070÷12070÷12070÷120
Стекло кварцевое оконное 25000.760.760.76

Сейчас для утепления различных строений используются, преимущественно, синтетические материалы. Они имеют отличные характеристики, а также в большинстве своем очень удобны в монтаже.

Исходя из значений в таблицах выше, из категории синтетических утеплителей одним из самых энергоэффективных является PIR-плита. При плотности всего 35 кг/м³ коэффициент теплопроводности у нее в среднем составляет 0,024 Вт/м*К. Но он может быть и меньше в зависимости от технологии производства PIR-плиты у того или иного производителя.

Сравнение теплопроводности PIR-плит и других материалов

Так, например, PIR-плиты LOGICPIR от российского производителя ТЕХНОНИКОЛЬ имеют показатель теплопроводности всего 0,022 Вт/м*К. Почему значение так снижается? Дело в том, что этот вид утеплителя с обеих сторон имеет фольгированный слой. Фольга, как известно, сама по себе способна отлично отражать тепловую энергию в обратную сторону, то есть в помещение. Благодаря этому свойству энергоэффективность материала растет, а теплопотери в доме снижаются. Таким образом PIR-утеплитель, имеющий такой слой с одной и другой стороны, гораздо лучше выполняет свои функции, чем, например, PIR-материал с бумажным технологическим покрытием.

В целом же LOGICPIR — обычная PIR-плита, которая представляет собой пористый материал с множеством микроячеек, наполненных воздухом. Она очень тонкая (толщина варьируется в пределах 2-5 см), легкая, не нагружает строительные конструкции, но при этом прочная и достаточно плотная, чтобы выдерживать некоторые физические воздействия. Инертна к химическим воздействиям, биологически устойчива и, кроме того, не склонна к возгораниям.

PIR-плита ТЕХНОНИКОЛЬ

Во время эксплуатации (а срок использования PIR-плит LOGICPIR составляет 50 лет) материал не теряет своих свойств. Его коэффициент теплопроводности не меняется даже при намокании: сам по себе утеплитель не впитывает воду. Дополнительную парозащиту обеспечивает и тот самый фольгированный слой — если при монтаже плит проклеить все стыки алюминиевым скотчем, то формируется непрерывный слой пароизоляции, не пропускающий влагу. Словом, это неплохой вариант синтетического утеплителя с одними из самых высоких характеристик.

Видео: Утепление каркасного дома PIR плитами

Для чего используются такие расчеты в практическом приложении?

Оценка эффективности имеющейся термоизоляции

А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?

Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.

Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.

Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.

Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.

Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.

Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.

Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.

Определение уровня тепловых потерь

Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.

Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.

R = Δt / q

Δt — разница температур по обе стороны конструкции, ℃.

q — удельное количество теряемого тепла, Вт.

То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.

Q = S × Δt/R

Q — теплопотери через ограждающую конструкцию, Вт.

S — площадь этой конструкции, м².

Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.

Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?

Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.

Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)

Материал и схема запонения проемаПриведенное термическое Ro, м ² × °С/Вт
Д и ПВХА
Двойное остекление в спаренных переплетах0.4
Двойное остекление в раздельных переплетах0.440,34*
Тройное остекление в раздельно-спаренных переплетах0.550.46
Однокамерный стеклопакет:
– из обычного стекла0.380.34
– из стекла с твердым селективным покрытием0.510.43
– из стекла с мягким селективным покрытием0.560.47
Двухкамерный стеклопакет:
– из обычного стекла (с межстекольным расстоянием 6 мм)0.510.43
– из обычного стекла (с межстекольным расстоянием 12 мм)0.540.45
– из стекла с твердым селективным покрытием0.580.48
– из стекла с мягким селективным покрытием0.680.52
– из стекла с твердым селективным покрытием и заполнением аргоном0.650.53
Обычное стекло и однокамерный стеклопакет в раздельных переплетах:
– из обычного стекла0.56
– из стекла с твердым селективным покрытием0.65
– из стекла с мягким селективным покрытием0.72
– из стекла с твердым селективным покрытием и заполнением аргоном0.69
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:
– из обычного стекла0.68
– из стекла с твердым селективным покрытием0.74
– из стекла с мягким селективным покрытием0.81
– из стекла с твердым селективным покрытием и заполнением аргоном0.82
Два однокамерных стеклопакета в спаренных переплетах0.7
Два однокамерных стеклопакета в раздельных переплетах0.74
Четырехслойное остекление в двух спаренных переплетах0.8
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером:
-200×200 ×100 мм0,31 (без переплета)
-250×250 ×100 мм0,33 (без переплета)
Примечания:
Д и ПВХ – переплеты из дерева или пластика (поливинилхлорида)
А – переплеты из алюмииия
* – перепеты из стали
все указанные значения даны для площади остекления 75% от площади светового проема

Понятно, что тепловые потери будут считаться,  исходя из площади остекления и разницы температур.

Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.

Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:

Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен

Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.

Калькулятор расчета термического сопротивления ограждающей конструкции

Перейти к расчётам

Пояснения по работе с калькулятором

Программа несложна, но все же требует некоторых пояснений.

Предлагаемый алгоритм расчета позволяет провести вычисления сопротивления теплопередаче для любой ограждающей конструкции, включающей от одного до пяти различных слоев.

  • Первый слой пусть будет считаться по умолчанию основным. Для него указывается:

— его толщина в миллиметрах (так сделано для удобства, а перевод в метры программа выполнит самостоятельно).

— коэффициент теплопроводности материала, из которого создан этот слой. Значение берется из таблиц, с учетом режима эксплуатации А или Б. При вводе значения в калькулятор вместо запятой в качестве десятичного разделителя используется точка.

  • Вторым слоем предлагается указать имеющуюся (если есть) или планируемую термоизоляцию. Здесь уже на выбор – если оставить по умолчанию «нет», то программа проигнорирует этот слой. Если согласиться – появятся поля ввода данных, те же толщина и коэффициент теплопроводности.
  • Аналогично по выбору пользователя вводятся или игнорируются еще три произвольных слоя. Это, кстати, могут быть внешняя и внутренняя отделка, если она выполнена из значимых для теплопроводности материалов, многослойная кладка стены и т.п.
  • Если задача стоит только в определении сопротивления теплопередаче, то можно сразу переходить к клавише «РАССЧИТАТЬ…».
  • Ну а если есть желание еще и найти величину тепловых потерь через рассчитываемую ограждающую конструкцию, то ставится отметка «да, включить дополнительный расчёт». В этом случае появятся еще три поля ввода данных – площадь ограждающей конструкции, температура в помещении и температура на улице.

Уличную температуру для расчетов, как правило, берут минимальную, свойственную самой холодной декаде зимы в регионе проживания. Так задается необходимый запас мощности отопительного оборудования и эффективности системы утепления. Домашнюю температуру обычно считают в пределах 20÷24 ℃ для жилых помещений. Для нежилых (подъезды, коридоры, кладовые и т.п.) можно ограничиться +15 ℃. Для ванных, душевых, бань – порядка 35 ℃.

Рассчитанное термическое сопротивление показывается первой строкой появляющегося результата. Если был выбран вариант с вычислением тепловых потерь, то их значение (в ваттах) будет указано во второй строке.

Коэффициент теплопроводности воздуха в воздушных прослойках. Воздушные прослойки. Области применения замкнутых и вентилируемых воздушных прослоек. Системы отопления: виды, устройство, выбор

Тепловлагопередача через наружные ограждения

Основы теплопередачи в здании

Перемещение теплоты всегда происходит от более теплой среды к более холодной. Процесс переноса теплоты из одной точки пространства в другую за счет разности температуры называется теплопередачей и является собирательным, так как включает в себя три элементарных вида теплообмена: теплопроводность (кондукцию), конвекцию и излучение . Таким образом, потенциалом переноса теплоты является разность температуры .

Теплопроводность

Теплопроводность – вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразными вещества. Таким образом, теплопроводность – это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. При изучении теплопроводности вещество рассматривается как сплошная масса, его молекулярное строение игнорируется. В чистом виде теплопроводность встречается только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.

Большинство строительных материалов являются пористыми телами . В порах находится воздух, имеющий возможность двигаться, то есть переносить теплоту конвекцией. Считается, что конвективной составляющей теплопроводности строительных материалов можно пренебречь ввиду ее малости. Внутри поры между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор, потому что чем больше поры, тем больше разность температуры на ее стенках. При рассмотрении теплопроводности характеристики этого процесса относят к общей массе вещества: скелету и порам совместно.

Ограждающие конструкции здания, как правило, является плоско-параллельными стенками , теплоперенос в которых осуществляется в одном направлении. Кроме того, обычно при теплотехнических расчетах наружных ограждающих конструкций принимается, что теплопередача происходит при стационарных тепловых условиях , то есть при постоянстве во времени всех характеристик процесса: теплового потока, температуры в каждой точке, теплофизических характеристик строительных материалов. Поэтому важно рассмотреть процесс одномерной стационарной теплопроводности в однородном материале , который описывается уравнением Фурье:

где q T поверхностная плотность теплового потока , проходящего через плоскость, перпендикулярную тепловому потоку , Вт/м 2 ;

λ теплопроводность материала , Вт/м. о С;

t – температура, изменяющаяся вдоль оси x, оС;

Отношение , носит название градиента температуры , о С/м, и обозначается grad t . Градиент температуры направлен в сторону возрастания температуры, которое связано с поглощением теплоты и уменьшением теплового потока. Знак минус, стоящий в правой части уравнения (2.1), показывает, что увеличение теплового потока не совпадает с увеличением температуры.

Теплопроводность λ является одной из основных тепловых характеристик материала. Как следует из уравнения (2.1) теплопроводность материала – это мера проводимости теплоты материалом, численно равная тепловому потоку, проходящему сквозь 1 м 2 площади, перпендикулярной направлению потока, при градиенте температуры вдоль потока, равном 1 о С/м (рис.1). Чем больше значение λ, тем интенсивнее в таком материале процесс теплопроводности, больше тепловой поток. Поэтому теплоизоляционными материалами принято считать материалы с теплопроводностью менее 0,3 Вт/м. о С.

Изотермы; – —— – линии тока теплоты.

Изменение теплопроводности строительных материалов с изменением их плотности происходит из-за того, что практически любой строительный материал состоит из скелета – основного строительного вещества и воздуха. К.Ф. Фокин для примера приводит такие данные: теплопроводность абсолютно плотного веществе (без пор) в зависимости от природы имеет теплопроводность от 0,1 Вт/м о С (у пластмассы) до 14 Вт/м о С (у кристаллических веществ при потоке теплоты вдоль кристаллической поверхности), в то время как воздух имеет теплопроводность около 0,026 Вт/м о С. Чем выше плотность материала (меньше пористость), тем больше значение его теплопроводности. Понятно, что легкие теплоизоляционные материалы имеют сравнительно небольшую плотность.

Различия в пористости и в теплопроводности скелета приводит к различию в теплопроводност

Сравнительная таблица теплопроводности современных строительных материалов

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Таблица теплопроводности материалов на Па-Пен

МатериалПлотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Пакля1500.052300
Панели стеновые из гипса DIN 1863600…9000.29…0.41
Парафин870…9200.27
Паркет дубовый18000.421100
Паркет штучный11500.23880
Паркет щитовой7000.17880
Пемза400…7000.11…0.16
Пемзобетон800…16000.19…0.52840
Пенобетон300…12500.12…0.35840
Пеногипс300…6000.1…0.15
Пенозолобетон800…12000.17…0.29
Пенопласт ПС-11000.037
Пенопласт ПС-4700.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
Пенопласт резопен ФРП-165…1100.041…0.043
Пенополистирол (ГОСТ 15588-70)400.0381340
Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
Пенополистирол «Пеноплекс»35…430.028…0.031600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
Пенополиуретановые листы1500.035…0.04
Пенополиэтилен0.035…0.05
Пенополиуретановые панели0.025
Пеносиликальцит400…12000.122…0.32
Пеностекло легкое100..2000.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
Пенофол44…740.037…0.039

Основные характеристики утеплителей

Предоставим для начала характеристики наиболее популярных теплоизоляционных материалов, на которые в первую очередь стоит обратить свое внимание при выборе. Сравнение утеплителей по теплопроводности следует производить только на основе назначения материалов и условий в помещении (влажность, наличие открытого огня и т.д.). Мы расположили далее в порядке значимости основные характеристики утеплителей

Мы расположили далее в порядке значимости основные характеристики утеплителей.

Сравнение строительных материалов

Теплопроводность. Чем ниже данный показатель, тем меньше требуется слой теплоизоляции, а значит, сократятся и расходы на утепление.

Влагопроницаемость. Меньшая проницаемость материала парами влаги снижает при эксплуатации негативное воздействие на утеплитель.

Пожаробезопасность. Теплоизоляция не должна гореть и выделять ядовитые газы, особенно при утеплении котельной или печной трубы.

Долговечность. Чем больше срок эксплуатации, тем дешевле он вам обойдется при эксплуатации, так как не потребует частой замены.

Экологичность. Материал должен быть безопасным для человека и окружающей природы.

Таблица теплопроводности материалов на Кл…

МатериалПлотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Кладка бутовая из камней средней плотности20001.35880
Кладка газосиликатная630…8200.26…0.34880
Кладка из газосиликатных теплоизоляционных плит5400.24880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
Кладка из малоразмерного кирпича17300.8880
Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000.29…0.35880
Кладка из ячеистого кирпича13000.5880
Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
Кладка «Поротон»8000.31900
Клен620…7500.19
Кожа800…10000.14…0.16
Композиты технические0.3…2
Краска масляная (эмаль)1030…20450.18…0.4650…2000
Кремний2000…2330148714
Кремнийорганический полимер КМ-911600.21150

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины

Таблица проводимости тепла воздушных прослоек

Если задумано индивидуальное строительство

При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:. Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Номер п/п Материал для стен, строительный раствор Коэффициент теплопроводности по СНиП
1.Кирпич0,35 – 0,87
2.Саманные блоки0,1 – 0,44
3.Бетон1,51 – 1,86
4.Пенобетон и газобетон на основе цемента0,11 – 0,43
5.Пенобетон и газобетон на основе извести0,13 – 0,55
6.Ячеистый бетон0,08 – 0,26
7.Керамические блоки0,14 – 0,18
8.Строительный раствор цементно-песчаный0,58 – 0,93
9.Строительный раствор с добавлением извести0,47 – 0,81

Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.

Это связано с несколькими причинами:

  • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
  • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
  • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

Теплопроводность пенопласта от 50 мм до 150 мм считаем теплоизоляцию

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/пМатериал стеныТеплопроводность, Вт/м·°CТолщина стены, мм
ТребуемаяДопустимая
1Газобетонный блок0,14444270
2Керамзитобетонный блок0,5517451062
3Керамический блок0,16508309
4Керамический блок (тёплый)0,12381232
5Кирпич (силикатный)0,7022211352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет сопротивления теплопередачи стены

Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям

Стена из газобетонного блока

1Газобетонный блок D600 (400 мм)2,89 Вт/м·°C
2Газобетонный блок D600 (300 мм) + утеплитель (100 мм)4,59 Вт/м·°C
3Газобетонный блок D600 (400 мм) + утеплитель (100 мм)5,26 Вт/м·°C
4Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)2,20 Вт/м·°C
5Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)2,88 Вт/м·°C

Стена из керамзитобетонного блока

1Керамзитобетонный блок (400 мм) + утеплитель (100 мм)3,24 Вт/м·°C
2Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)1,38 Вт/м·°C
3Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)3,21 Вт/м·°C

Стена из керамического блока

1Керамический блок (510 мм)3,20 Вт/м·°C
2Керамический блок тёплый (380 мм)3,18 Вт/м·°C
3Керамический блок (510 мм) + утеплитель (100 мм)4,81 Вт/м·°C
4Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)2,62 Вт/м·°C

Стена из силикатного кирпича

1Кирпич (380 мм) + утеплитель (100 мм)3,07 Вт/м·°C
2Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)1,38 Вт/м·°C
3Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм)3,05 Вт/м·°C

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Температура материала

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Что влияет на способность пенополистирола проводить тепло

Чтобы наглядно понять, что такое теплопроводность, возьмем кусок материала метровой толщины и площадью один квадратный метр. Причем одну его сторону нагреваем, а вторую оставляем холодной. Разница этих температур должна быть десятикратной. Измерив количество теплоты, которое за одну секунду переходит на холодную сторону, получаем коэффициент теплопроводности.

Отчего же именно пенополистирол способен хорошо сохранять как тепло, так и холод? Оказывается, всё дело в его строении. Конструктивно данный материал состоит из множества герметичных многогранных ячеек, имеющих размер от 2 до 8 миллиметров. Внутри у них находится воздух – он составляет 98 процентов и служит великолепным теплоизолятором. На полистирол приходится 2% от объёма.А по массе полистирол составляет 100%, т.к. воздух, условно говоря, не имеет массы.

Надо заметить, что теплопроводность экструдированного пенополистирола остается неизменной по прошествии времени. Это выгодно отличает данный материал от других пенопластов, ячейки которых наполнены не воздухом, а иным газом. Ведь этот газ обладает способностью постепенно улетучиваться, а воздух так и остается внутри герметичных пенополистирольных ячеек.

Покупая пенопласт, мы обычно спрашиваем продавца о том, каково значение плотности данного материала. Ведь мы привыкли, что плотность и способность проводить тепло неразрывно связаны друг с другом. Существуют даже таблицы этой зависимости, с помощью которых можно выбрать подходящую марку утеплителя.

Плотность пенополистирола кг/м3Теплопроводность Вт./МКв
100,044
150,038
200,035
250,034
300,033
350,032

Однако в нынешнее время придумали улучшенный утеплитель, в который введены графитовые добавки. Благодаря им коэффициент теплопроводности пенополистирола различной плотности остается неизменным. Его значение – от 0,03 до 0,033 ватта на метр на Кельвин. Так что теперь, приобретая современный улучшенный ЭППС, нет надобности проверять его плотность. 

Маркировка пенополистирола теплопроводность которого не зависит от плотности:

Марка пенополистиролаТеплопроводность Вт./МКв
EPS 500.031 – 0.032
EPS 700.033 – 0.032
EPS 800.031
EPS 1000.030 – 0.033
EPS 1200.031
EPS 1500.030 – 0.031
EPS 2000.031

Таблица теплопроводности материалов на М-О

Магнезия в форме сегментов для изоляции труб220…3000.073…0.084
Мастика асфальтовая20000.7
Маты, холсты базальтовые25…800.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75)1500.061840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.038
Мел1800…28000.8…2.2800…880
Медь (ГОСТ 859-78)8500407420
Миканит2000…22000.21…0.41250
Мипора16…200.0411420
Морозин100…4000.048…0.084
Мрамор (облицовка)28002.9880
Накипь котельная (богатая известью, при 100°С)1000…25000.15…2.3
Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
Настил палубный6300.211100
Найлон0.53
Нейлон13000.17…0.241600
Неопрен0.211700
Опилки древесные200…4000.07…0.093

Термическое сопротивление воздушной прослойки.

⇐ ПредыдущаяСтр 4 из 5Следующая ⇒

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек, расположенных между слоями ограждающей конструкции, называют термическим сопротивлением Rв.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.


Рис.5. Теплообмен в воздушной прослойке.

Тепловой поток, проходящий через воздушную прослойку qв.п, Вт/м², складывается из потоков, передаваемых теплопроводностью (2) qт, Вт/м², конвекцией (1) qк, Вт/м², и излучением (3) qл, Вт/м².

 

 

24. Условное и приведенное сопротивление теплопередаче. Каоффицент теплотехнической однородности ограждающих конструкций.

25. Нормирование сопротивления теплопередаче исходя из санитарно-гигиенич.условий

, R0= *

Нормируем Δ tн , тогда R0тр= * , т.е. для того, чтобы Δ t≤ Δ tн Необходимо

R0≥ R0тр

СНиП распространяет это требование на приведенное сопротивл. теплопередаче.

R0пр≥ R0тр

tв– расчетная температура внутреннего воздуха, °С;

приним. по нормам для проектир. здания

tн– – расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92

Aв(альфа)- коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, принимаемый по СНиП

Δtннормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимаемых по CНиП

Требуемое сопротивление теплопередаче Rтро дверей и ворот должно быть не менее 0,6Rтро стен зданий и сооружений, определяемого по формуле (1) при расчетной зимней температуре наружного воздуха, равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92.

При определении требуемого сопротивления теплопередаче внутренних ограждаюших конструкций в формуле (1) следует принимать вместо tн-расчетную температуру воздуха более холодного помещения.

26. Теплотехнический расчет необходимой толщины материала ограждения исходя из условий достижения требуемого сопротивления теплопередаче.

 

27. Влажность материала. Причины увлажнения конструкции

 

Влажность –физическая величина равная кол-ву воды, содержащейся в порах материала.

Бывает по массе и объемная

1)Строительная влага. (при возведении здания). Зависит от конструкции и способа возведения работ. Сплошная кирпичная кладка хуже керамических блоков. Наиболее благоприятна древесина(сборные стены). ж/б не всегда. Должна исчезнуть за 2=-3 года эксплуатации.Меры: просушка стен

Грунтовая влага. (капиллярное всасывание). Доходит до уровня 2-2,5 м. водоизолирующие слои, при правильном устройстве не влияет.

2)Грунтовая влага,проникает в ограждение из грунта вследствие капиллярного всасывания

3)Атмосферная влага. (косой дождь,снег). Особенно важно у крыш и карнизов.. сплошные кирпичные стены не требуют защиты при правильно сделанной расшивке.ж/б , легкобетонные панели внимание на стыки и оконные блоки, фактурный слой из водонепроницаемых материалов. Защита=защитная стенка на откосе

4)Эксплуатационная влага. (в цехах промышленных зданий, в основном в полах и ниж части стен)решение: водонепроницаемые полы, устройство водоотвода, облицовка нижней части керамической плиткой, водонепроницаемая штукатурка. Защита=защитная облицовка с внутр. стороны

5)Гигроскопическая влага. Обусловлена повышенной гигроскопичностью мат.-лов(свойство поглощать водяные пары из влажн.воздуха)

6)Конденсация влаги из воздуха:а)на поверхность ограждения.б)в толще ограждения

28. Влияние влажности на свойства конструкций

1)С повышением влажности повышается теплопроводность конструкции.

2)Влажностные деформации. Влажность гораздо хуже, чем тепловое расширение. Отслаивание штукатурки в рез-те скопившейся влаги под ней, затем влага замерзает, расширяется в объеме и отрывает штукатурку. Невлагостойкие мат-лы при увлажнении деформируются. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание.

3)Снижение долговечности-кол-ва лет безотказной работы конструкции

4)Биологические повреждения (грибок, плесень)из-за выпадения росы

5)Потеря эстетического вида

Следовательно при выборе материалов учитывают их влажностный режим и выбирают материалы с наим влажностью. Также чрезмерная влажность в помещении может вызвать распространение заболеваний и инфекций.

С технической точки зрения, приводит к потерям долговечности и конструкции и ее морозостойких св-в. Некоторые материалы при повышенной влажности теряют механическую прочность, меняют форму. Например гипс при повыш влажности приобретает ползучесть., фанера набухание, расслаивание. Коррозия металла. ухудшение внешнего вида.

29. Сорбция водяного пара строит. матер. Механизмы сорбции. Гистерезис сорбции.

Сорбция – процесс поглощения водяного пара, который приводит к равновесному влажностному состоянию материала с воздухом. 2 явления. 1. Поглощение в результате соударения молекулы пар с поверхностью пор и прилипание к этой поверхности(адсорбция)2. Прямое растворение влаги в объеме тела(абсорбция). Влажность увеличивается с увеличением относительной упругости и понижением температуры. «десорбция» если влаж.образец поместить в эксикаторы (раствор серной кислоты), то он отдает влагу.

Механизмы сорбции:

1.Адсорбция

2.Капиллярная конденсация

3.Объемное заполнение микропор

4.Заполнение межслоевого пространства

1 стадия. Адсорбция-это явление, при котором поверхность пор покрывается одним или несколькими слоями молекул воды.(в мезопорах и макропорах).

2 стадия. Полимолекулярная адсорбция – образуется многослойный адсорбированный слой.

3 стадия. Капиллярная конденсация.

ПРИЧИНА. Давление насыщенного пара над вогнутой поверхностью меньше, чем над плоской поверхностью жидкости. В капиллярах малого радиуса влага образует вогнутые миниски, поэтому появляется возможность капиллярной конденсации. Если D>2*10-5 см, то капиллярной конденсации не будет.

Десорбция –процесс естественного высушивания материала.

Гистерезис («различие») сорбции заключается в различии изотермы сорбции, полученной при увлажнении материала от изотермы десорбции, полученной от высушенного материала. показывает % разницу между весовой влажностью при сорбции и вес влажностью десорбции (десорбция 4.3%,сорбция 2,1%, гистерезис 2,2%)при увлажнении изотермы сорбции. При высыхании десорбции.

 

30. Механизмы влагопереноса в материалах стройконструкций. Паропроницаемость, капиллярное всасыванье воды.

1.В зимнее время из-за разности температур и при разных парциальных давлениях через ограждение проходит поток водяного пара (от внутренней поверхности к наружной)-диффузия водяного пара. Летом наоборот.

2. Конвективный перенос водяного пара (с потоком воздуха)

3. Капилярный перенос воды (просачивание) сквозь пористые матер.

4. Гравитационный протечки воды сквозь трещины, отверстия, макропоры.

 

Паропроницаемость –сво-во материала или конструкции, выполненой из них, пропускать сквозь себя водяной пар.

Коэф.поропроницаемости – Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич.

Сопротивление паропроницанию: R=толщина/мю

Мю -коэф паропроницаемости (определяется по СНИПу 2379 теплотехника)

Капиллярное всасывание воды стройматериалами –обеспечивает постоянный перенос жидкой влаги сквозь пористые материалы из области с высокой концентрацией в область с низкой концентрацией.

Чем тоньше капилляры, тем больше сила капилярного всасывания, но в целом скорость переноса уменьшается.

Капилярный перенос может быть уменьшен или устранен путем устройства соответствующего барьера (небольш. воздушные прослойка или капилярно-неактивный слой(непористый)).

 

31. Закон Фика. Коэффициент паропроницаемости

P(количество пара, г) = (eв-eн)F*z*(мю/толщину),

Мю – коэф. паропроницаемости (определяется по СНИПу 2379 теплотехника)

Физич. величина численно равная кол-ву пара, прошедшего через пластину при единичной площади, при единичном перепаде давления, при единичной толщине пластины, при единичном времени при перепаде парциального давления на сторонах пластины е 1 Па.[мг/(м2*Па)].Наименьшее мю имеет руберойд 0.00018, наибольшее мин.вата=0,065г/м*ч*мм.рт.ст., оконное стекло и металлы паронепроницаемы, воздух наибольшая паропрониц-ть. При уменьш. Температуры, мю уменьшается, при повыш.влажности мю увелич. Зависит от физич свойства материала и отражает его способность проводить диффундирующий через него водяной пар. Анизотропные материалы имеют разные мю(у дерева вдоль волокон=0,32,поперек=0,6).

Эквивалентное сопротивление паропроницанию ограждения при последовательном расположении слоев. Закон Фика.

Q=(e1-e2)/RnqRn1n=(en1n-1-e2)

 

32 Расчет распределения парциального давления водяного пара по толщине конструкции.

       
   
 

 

 

Rпо- сопротивление паропроницанию

Rпх- сопротивление паропроницанию до плоскости.



Читайте также:

 

Воздух – теплопроводность

Теплопроводность – это свойство материала, которое описывает способность проводить тепло . Теплопроводность может быть определена как

количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, из-за градиента единичной температуры в условиях устойчивого состояния”.

Самыми распространенными единицами измерения теплопроводности являются Вт / (м · К) в системе СИ и БТЕ / (ч фут ° F) в британской системе мер.

Табличные значения и преобразование единиц теплопроводности приведены под рисунками.

Онлайн-калькулятор теплопроводности воздуха

Калькулятор, представленный ниже, можно использовать для расчета теплопроводности воздуха при заданных температуре и давлении.
Выходная проводимость выражается в мВт / (м · K), британских тепловых единицах (IT) / (ч фут · ° F) и ккал (IT) / (ч · м · K).

См. Также другие свойства Воздуха при изменяющейся температуре и давлении: Плотность и удельный вес при переменной температуре, Плотность при переменном давлении, Коэффициенты диффузии газов в воздухе, Число Прандтля, Удельная теплоемкость при различной температуре и Удельная теплоемкость при переменное давление, температуропроводность, свойства в условиях равновесия газ-жидкость и теплофизические свойства воздуха при стандартных условиях, а также состав и молекулярная масса,
, а также теплопроводность аммиака, бутана, диоксида углерода, этана, этилена, водорода, метана , азот, пропан и вода.

См. Также Калькулятор теплопроводности

Вернуться к началу

Вернуться к началу


Вернуться к началу

Теплопроводность воздуха при атмосферном давлении и температурах в ° C:

71,35
Температура Теплопроводность
[° C] [мВт / м K] [ккал (IT) / (hm K)] [BTU (IT) / (ч фут ° F)]
-190 7.82 0,00672 0,00452
-150 11,69 0,01005 0,00675
-100 16,20 0,01393 0,00936
-75 18,34 0,01060
-50 20,41 0,01755 0,01179
-25 22,41 0.01927 0,01295
-15 23,20 0,01995 0,01340
-10 23,59 0,02028 0,01363
-5 23,97 0,0201361
0 24,36 0,02094 0,01407
5 24,74 0,02127 0,01429
10 25.12 0,02160 0,01451
15 25,50 0,02192 0,01473
20 25,87 0,02225 0,01495
25 26,24 9007 0,02
30 26,62 0,02289 0,01538
40 27,35 0,02352 0.01580
50 28,08 0,02415 0,01623
60 28,80 0,02477 0,01664
80 30,23 0,02599 0,01746 10052 0,02548 0,01746 31,62 0,02719 0,01827
125 33,33 0,02866 0,01926
150 35.00 0,03010 0,02022
175 36,64 0,03151 0,02117
200 38,25 0,03289 0,02210
225 39,83 0,01
300 44,41 0,03819 0,02566
412 50,92 0,04378 0.02942
500 55,79 0,04797 0,03224
600 61,14 0,05257 0,03533
700 66,32 0,05702 0,03832 0,05702 0,03832
0,06135 0,04122
900 76,26 0,06557 0,04406
1000 81.08 0,06971 0,04685
1100 85,83 0,07380 0,04959

Наверх
Теплопроводность воздуха при атмосферном давлении и температурах в ° F:

40 0,01911
Температура Теплопроводность
[° F] [британских тепловых единиц (IT) / (час футов ° F)] [ккал (IT) / (hm K)] [мВт / м · К]
-300 0.00484 0,00720 8,37
-200 0,00788 0,01172 13,63
-100 0,01068 0,01589 18,48
-50 0,0170086 20,77
-20 0,01277 0,01901 22,10
0 0,01328 0.01976 22,98
10 0,01353 0,02013 23,41
20 0,01378 0,02050 23,84
30 0,01402 0,0208749
0,01427 0,02123 24,70
50 0,01451 0,02160 25,12
60 0.01476 0,02196 25,54
70 0,01500 0,02232 25,95
80 0,01524 0,02267 26,37
100 0,01571
100 0,01571
120 0,01618 0,02408 28,00
140 0,01664 0,02477 28.80
160 0,01710 0,02545 29,60
180 0,01755 0,02612 30,38
200 0,01800 0,02679 31,16
0,02679 31,16 0,02843 33,07
300 0,02018 0,03003 34,93
350 0.02123 0,03160 36,75
400 0,02226 0,03313 38,53
450 0,02327 0,03463 40,28
500 0,02426
500 0,02426
600 0,02620 0,03898 45,34
700 0,02807 0.04177 48,58
800 0,02990 0,04449 51,74
1000 0,03342 0,04973 57,84
1200 0,03680 0,054,69 1400 0,04007 0,05963 69,35
1600 0,04325 0,06436 74.85
1800 0,04635 0,06898 80,23
2000 0,04941 0,07353 85,51

Преобразование единиц теплопроводности:

тепловая единица (международная) / (фут-час, градус Фаренгейта) [Btu (IT) / (ft h ° F], британская тепловая единица (международная) / (дюйм-час, градус Фаренгейта) [Btu (IT) / (в h ° F]) , британская тепловая единица (международная) * дюйм / (квадратный фут * час * градус Фаренгейта) [(британские тепловые единицы (IT) дюйм) / (фут² час ° F)], килокалория / (метр час градус Цельсия) [ккал / (mh ° C)], джоуль / (сантиметр второй градус кельвина) [Дж / (см · с · K)], ватт / (метр градус кельвина) [Вт / (м ° C)],

  • 1 британская тепловая единица (IT) / (фут ч ° F) = 1/12 Btu (IT) / (в ч ° F) = 0.08333 британских тепловых единиц (IT) / (в ч ° F) = 12 Btu (IT) в / (фут 2 ч ° F) = 1,488 ккал / (мч ° C) = 0,01731 Дж / (см · с · K) = 1,731 Вт / (м · К)
  • 1 британская тепловая единица (IT) / (в час · ° F) = 12 британских тепловых единиц (IT) / (фут · час · ° F) = 144 британских тепловых единицы (IT) · дюйм / (фут 2 час · ° F) = 17,858 ккал / (м · ч ° C) = 0,20769 Дж / (см · с · K) = 20,769 Вт / (м · K)
  • 1 (британских тепловых единиц (IT) дюйм) / (фут² час ° F) = 0,08333 британских тепловых единиц (IT) / ( фут ч ° F) = 0,00694 британских тепловых единиц (IT) / (в час ° F) = 0,12401 ккал / (мч ° C) = 0,001442 Дж / (см · с · K) = 0,1442 Вт / (м · K)
  • 1 Дж / ( см · с · K) = 100 Вт / (м · K) = 57,789 БТЕ (IT) / (фут · ч · ° F) = 4.8149 БТЕ (IT) / (в час ° F) = 693,35 (БТЕ (IT) дюйм) / (фут² час ° F) = 85,984 ккал / (мч ° C)
  • 1 ккал / (мч ° C) = 0,6720 БТЕ (IT) / (фут · ч ° F) = 0,05600 Btu (IT) / (в час · ° F) = 8,0636 (Btu (IT) дюйм) / (фут 2 час · ° F) = 0,01163 Дж / (см · с · K ) = 1,163 Вт / (м · К)
  • 1 Вт / (м · К) = 0,01 Дж / (см · с · К) = 0,5779 БТЕ (IT) / (фут · ч · ° F) = 0,04815 БТЕ (IT) / (дюйм · ч ° F) = 6,9335 (британских тепловых единиц (IT) дюйм) / (фут² ч ° F) = 0,85984 ккал / (мч ° C)

В начало

Теплопроводность выбранных материалов и газов

Теплопроводность единиц свойство материала, которое описывает способность проводить тепло.Теплопроводность может быть определена как

“количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния”

Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

Аммиак (газ) 909 900 Фтор (газ) Стекло, Жемчуг Кожа , сухой 9049 Картофель, сырая мякоть 0,5 900um48 Древесина ореха Пена уран 021 0,606
Теплопроводность
k –
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)

12528 o
(257 o F)

225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера 0,049 (газ) 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Древесина балса 0,048
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 – 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17 909 900 (газ) 0,02
Шкала котла 1,2 – 3,5
Бор 25
Латунь
Бризовый блок 0.10 – 0,20
Кирпич плотный 1,31
Кирпич огневой 0,47
Кирпич изоляционный 0,15
Кирпичная кладка обыкновенная ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Сливочное масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7929
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 – 0,33
Нитрат целлюлозы, целлулоид 0,12 – 0,21
Цемент, Портленд
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Никель Хром Никель 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 – 1,8
Глина насыщенная 0,6 – 2,5
Уголь 0,2
Кобальт
Треска (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 – 0,3
Бетон, средний 0.4 – 0,7
Бетон, плотный 1,0 – 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Хлопок 0,029
Углеродистая сталь 900 Утеплитель 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 909 11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидное покрытие 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Фиброволоконная изоляционная плита 0,048
Фиброволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1,05
0,18
Стекло, жемчуг, насыщенный 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 – 4,0 52 9057
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень засушливая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Лиственные породы (дуб, клен …) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Слиток железа 47-58
Изоляционные материалы 0,035 – 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
0,14
Известняк 1,26 – 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 – 2,9429 9057 900
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
90 Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024 0,01
Закись азота (газ)

Нейлон 6, Нейлон 6/6 0,25
Масло, машинное смазывание SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25 Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенолформальдегидные 0,13 – 0,25
Фосфорбронза 110 159
Шаг 0,13
Карьерный уголь 0.24
Штукатурка светлая 0,2
Штукатурка металлическая 0,47
Штукатурка песочная 0,71
Гипс деревянная планка 0,2849 0,29
Пластилин 0,65 – 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19 909 909
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 – 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 – 0,25 Полипропилен 0,1 – 0,22
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуритан 0,03
Фарфор 1,5
Калий 1
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл 909 Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 – 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 – 0,25
Песок влажный 0,25 – 2
Песок насыщенный 2 – 4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Кремниевая литьевая смола 0,15 – 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 – 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими материя 0,15 – 2
Грунт, насыщенный 0,6 – 4

Припой 50-50

50

Сажа

0.07

Пар, насыщенный

0,0184
Пар, низкое давление 0,0188
Стеатит 2
Сталь, углеродистая сталь
Сталь, нержавеющая сталь
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 – 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Древесина, ясень 0,16
Древесина, береза ​​ 0,14
Древесина, лиственница 0,12
Древесина 49, клен
Древесина дубовая 0,17
Древесина смоляная 0,14
Древесина осина 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
0,15
Олово
Титан
Вольфрам
Уран Ретан
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Древесина дуба 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 – 0,15
Ксенон (газ) 0,0051
Цинк

1 плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример – Проводящая теплопередача через алюминиевый горшок по сравнению с горшком из нержавеющей стали

Кондуктивная теплопередача через стенку горшка может быть рассчитана как

q = (k / s) A dT (1)

или альтернативно

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (ч фут ° F) )

dT = t 1 – t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9000 7

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 – t 2 = разница температур ( o C, o F)

Примечание! – общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку емкости толщиной 2 мм – разность температур 80 o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм – разница температур 80 o C

Теплопроводность нержавеющей стали составляет 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

Теплопроводность

Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м · К) *
Алмаз 1000
Серебро 1.01 406.0
Медь 0.99 385.0
Золото 314
Латунь 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50.2
Свинец 0,083 34,7
Ртуть 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0,8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0.08
Снег (сухой) 0,00026
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Шерстяной войлок 0,0001 0,04
Минеральная вата 0,04
Полистирол (пенополистирол) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,000057 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. С учетом этого два приведенных выше столбца не всегда совпадают.Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое делает пенополиуретан одним из лучших изоляторов. NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0.022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 с плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Ссылка
Young
Ch 15.

Эффективная теплопроводность полиуретановой пены с открытыми ячейками на основе фрактальной теории

На основе фрактальной теории геометрическая структура внутри полиуретановой пены с открытыми ячейками, которая широко используется в качестве адиабатического материала.Создана упрощенная клеточная фрактальная модель. В модели описана методика расчета эквивалентной теплопроводности пористой пены и вычислена фрактальная размерность. Выводятся математические формулы для фрактальной эквивалентной теплопроводности в сочетании с газом и твердой фазой, для эквивалентной теплопроводности теплового излучения и для полной теплопроводности. Однако общий эффективный тепловой поток складывается из теплопроводности твердой фазы и газа в порах, излучения и конвекции между газом и твердой фазой.Получено фрактальное математическое уравнение эффективной теплопроводности с учетом фрактальной размерности и вакансионной пористости в теле ячейки. Результаты расчетов хорошо согласуются с экспериментальными данными, разница составляет менее 5%. Обобщены основные влияющие факторы. Исследования полезны для улучшения адиабатических характеристик пеноматериалов и разработки новых материалов.

1. Введение

Благодаря выдающимся адиабатическим характеристикам пенополиуретан с открытыми ячейками, малой плотностью и низкой теплопроводностью (0.018 ~ 0,032200 Вт / (м · К)), применяется в различных областях, таких как строительство, холодильные камеры для пищевых продуктов и перевозки грузов в холодильнике, с целью сохранения тепла. Неправильная геометрическая конструкция пенополиуретана с открытыми порами делает его нестандартным по физическим свойствам. И это затрудняет теоретические исследования, особенно в отношении точных тепловых характеристик. На самом деле, теплопроводность адиабатических материалов можно измерить с помощью пластинчатого термозащитного устройства, но это неудобно для научных исследований и разработки пенополиуретана.Анализ и оценка эффективной теплопроводности пористой среды в течение долгого времени представляли собой масштабный исследовательский проект теплофизической инженерии и гилологии [1]. Хотя в качестве исследовательского проекта для расчета теплопроводности используется пенопластовый материал пористой среды, он всегда считается соединяющей виртуальной средой в крупномасштабном пространстве, то есть «средним объемом» в геометрическом распределении. Уитакер [2, 3] и Уитакер и Чоу [4] использовали метод виртуального «среднего объема» для описания процедуры тепломассопереноса внутри пористой среды.Считалось, что пористая среда объединена с твердофазным материалом, жидкостью и газом. Газовая фаза содержит сухой воздух и пар. Предположили, что все фазы в пористой среде представляют собой тепловые балансы, а размеры пор соответствуют «среднему объему» – дюжине переменных, входящих в математическую формулу. Yu et al. [5, 6] также экспериментально исследовали их физическую модель связи и диффузии и вывели соответствующую математическую формулу.

В настоящее время существует два основных метода оценки теплопроводности материалов пористых сред.Первый заключается в том, что теплопроводность освещается как сложные математические функции пропорцией пор и параметрами микроструктуры. Лагард [7] вывел эквивалентную эффективную теплопроводность

Общие сведения о теплопроводности | Advanced Thermal Solutions

Теплопроводность – это объемное свойство, которое описывает способность материала передавать тепло. В следующем уравнении теплопроводность – это коэффициент пропорциональности k .Расстояние теплопередачи определяется как † x , которое перпендикулярно области A . Скорость передачи тепла через материал составляет Q , от температуры T 1 до температуры T 2 , когда T 1 > T 2 [2].


Рис. 1. Процесс теплопроводности от горячей (T1) к холодной (T2) поверхности
Теплопроводность материалов играет важную роль в охлаждении электронного оборудования.От кристаллизатора, в котором выделяется тепло, до шкафа, в котором размещена электроника, теплопроводность и, следовательно, теплопроводность являются неотъемлемыми компонентами общего процесса управления температурой.

Путь тепла от матрицы к внешней среде – сложный процесс, который необходимо учитывать при разработке теплового решения. В прошлом многие устройства могли работать, не требуя внешнего охлаждающего устройства, такого как радиатор.В этих устройствах необходимо было оптимизировать сопротивление проводимости от кристалла к плате, так как первичный путь теплопередачи находился в печатной плате. По мере увеличения уровней мощности передача тепла исключительно на плату становилась недостаточной (кредитная шакита). Большая часть тепла теперь рассеивается непосредственно в окружающую среду через верхнюю поверхность компонента. В этих новых более мощных устройствах важно низкое сопротивление перехода к корпусу, а также конструкция присоединенного радиатора.

Для определения важности теплопроводности материала в конкретном приложении для управления температурным режимом (например,г. теплоотвод) важно разделить общее тепловое сопротивление, связанное с теплопередачей кондуктом, на три части: межфазное сопротивление, сопротивление растеканию и сопротивление проводимости.

  • Материал интерфейса улучшает тепловой контакт между несовершенными сопрягаемыми поверхностями. Материал с высокой теплопроводностью и хорошей способностью к смачиванию поверхности снижает межфазное сопротивление .
  • Сопротивление растеканию используется для описания теплового сопротивления, связанного с небольшим источником тепла, соединенным с большим радиатором.Помимо прочего, на сопротивление растеканию напрямую влияет теплопроводность основания радиатора.
  • Сопротивление проводимости – это мера внутреннего теплового сопротивления в радиаторе, когда тепло передается от основания к ребрам, где оно рассеивается в окружающую среду. Что касается конструкции радиатора, сопротивление теплопроводности менее важно в условиях естественной конвекции и низкого расхода воздуха и становится более важным при увеличении расхода.

Общие единицы теплопроводности – Вт / мК и БТЕ / ч-фут – o F.

Рисунок 2. Теплопроводность тонкой кремниевой пленки [3].

В электронной промышленности постоянное стремление к меньшему размеру и более высокой скорости значительно уменьшило масштаб многих компонентов. Поскольку этот переход теперь продолжается от макро- к микромасштабам, важно учитывать влияние на теплопроводность и не предполагать, что объемные свойства все еще точны. Уравнения Фурье на основе континуума не могут предсказать тепловые характеристики в этих меньших масштабах.Необходимы более полные методы, такие как уравнение переноса Больцмана и решеточный метод Больцмана [3].

Влияние толщины на проводимость показано на рисунке 2. Характеризуемым материалом является кремний, который широко используется в электронике.

Рис. 2. Теплопроводность тонкой кремниевой пленки [3]

Как и многие физические свойства, теплопроводность может быть анизотропной в зависимости от материала (в зависимости от направления). Кристалл и графит – два примера таких материалов.Графит используется в электронной промышленности, где ценна его высокая проводимость в плоскости. Кристаллы графита обладают очень высокой проводимостью в плоскости (~ 2000 Вт / мК) из-за сильной связи углерод-углерод в их базисной плоскости. Однако параллельные базисные плоскости слабо связаны друг с другом, и теплопроводность, перпендикулярная этим плоскостям, довольно низкая (~ 10 Вт / мК) [4].

На теплопроводность влияют не только изменения толщины и ориентации; температура также влияет на общую величину.Из-за повышения температуры материала увеличивается внутренняя скорость частиц и увеличивается теплопроводность. Эта увеличенная скорость передает тепло с меньшим сопротивлением. Закон Видемана-Франца описывает это поведение путем корреляции теплопроводности и электропроводности с температурой. Важно отметить, что влияние температуры на теплопроводность нелинейно и его трудно предсказать без предварительного исследования. На графиках ниже показано поведение теплопроводности в широком диапазоне температур.Оба этих материала, нитрид алюминия и кремний, широко используются в электронике (рисунки 3 и 4 соответственно).

В будущем более мощные процессоры с несколькими ядрами еще больше подтолкнут потребность в улучшенной теплопроводности. Следовательно, стоит также изучить другие области исследований и разработок в области повышения теплопроводности для существующих материалов, используемых в корпусах электроники. Одной из таких областей является влияние нанотехнологий на теплопроводность, где углеродные нанотрубки показали значения проводимости, близкие к проводимости алмаза из-за большой длины свободного пробега фононов [7].Разработка новых материалов и улучшение существующих материалов приведет к более эффективному управлению температурой, поскольку рассеиваемая мощность устройств постоянно растет.

Каталожные номера:

1. Теплопроводность, Американский научный словарь наследия, Houghton Mifflin Company

2. Моран М., Шапиро Х., Основы инженерной термодинамики, стр. 47, 1988 г.

3. Гай С., Ким В., Чанг П., Амон К., Джон М. Анизотропная теплопроводность наноразмерных ограниченных тонких пленок через решетку Больцмана, Химическая инженерия, Университет Карнеги-Меллона, ноябрь 2006 г., стр.2006

4. Норли Дж., Роль природного графита в охлаждении электроники, Охлаждение электроники, август 2001 г.

5. Слак, Г.А., Танзилли Р.А., Поль Р.О., Вандерсанде Дж. В., Дж. Phys. Chem. Твердые тела 48, 7 (1987), 641-647

6. Глассбреннер, К. и Слак, Г., Теплопроводность кремния и германия от 3 ° К до точки плавления, Physical Review 134, 4A, 1964

7. Бербер С., Квон Ю. и Томанек Д., Необычно высокая теплопроводность углеродных нанотрубок, Physical Review Letters, Том 84, № 20, стр. 4613-4616, 2000 г.

Термические интерфейсы и модули TIM | TE Энциклопедия | Техническая информация | Термоэлектрическое охлаждение | Охладители Пельтье

Тепловые интерфейсы и материалы термоинтерфейсов

Тепловой интерфейс – это любое соединение между двумя объектами, через которое должно проходить тепло (тепловая энергия).Типичный пример – между модулем Пельтье и радиатором.

Примечание: Термины модуль Пельтье, термоэлектрическое устройство, термоэлектрический модуль, охладитель TE, TEC, микросхема Пельтье и переход Пельтье описывают одно и то же устройство и используются взаимозаменяемо.

Цель хорошего теплового интерфейса – максимизировать теплопередачу тепловой энергии. Следующее руководство объясняет проблемы термического соединения двух поверхностей и предлагает несколько решений для достижения этой цели.


Микроскопический взгляд на поверхности

Даже когда у вас есть две «плоская и гладкая» поверхности, они далеко не по-настоящему плоские или гладкие. На приведенной ниже диаграмме в микроскопическом масштабе показано, что происходит на самом деле.

Как видите, две поверхности могут выглядеть плоскими и гладкими, но на самом деле, при рассмотрении под увеличением, они состоят из «холмов», «пиков» и «впадин». Когда эти две поверхности соприкасаются друг с другом, соприкасаются только вершины.Было подсчитано, что средняя степень контакта между любыми двумя гладкими поверхностями в действительности составляет всего 5%. Остальные 95% – пустоты!

На изображении выше показано, как оставшиеся впадины создают пустоты, через которые с трудом может проходить тепловая энергия, фактически создавая изолированную область, а не идеальный тепловой интерфейс!


Обработка поверхности и подготовка
Как минимум, любая поверхность, которая должна быть частью термоинтерфейса, должна быть плоской до + – 0.001 дюйм по всей поверхности раздела и гладкость до чистоты поверхности 32 микродюймов или лучше.

Если возможно, лучше отполировать поверхность, поскольку она в конечном итоге уменьшает размер и глубину «выступов» и «впадин». Полированная поверхность от №6 до №8 – это хорошо, но экономичность полировки может определить другую точку остановки для вашего продукта.

Поверхность сопряжения должна быть тщательно очищена после завершения всех операций обработки и полировки. Для удаления всех масел и мусора настоятельно рекомендуется сначала ультразвуковая очистка в нагретом растворе обезжиривателя, а затем в растворителе, таком как ацетон.(Никогда не помещайте устройство Пельтье в ультразвуковой очиститель!) Не прикасайтесь к поверхности голыми руками (кожным жиром) и не допускайте контакта с другими материалами. Эту заключительную очистку лучше завершить непосредственно перед сборкой, чтобы свести к минимуму пыль или загрязнение.


Материалы термоинтерфейса (TIM)

Необходим интерфейсный материал «стороннего производителя», так как практически невозможно добиться идеальных плоских и гладких поверхностей. Цель TIM – заполнить впадины и зазоры сжимаемым материалом, который имеет гораздо более высокую теплопроводность (способность передавать тепло), чем воздушные зазоры, которые он заменяет.По сути, это заставляет весь интерфейс передавать тепло, а не только там, где соприкасаются пики. На следующем изображении показано, как ситуация резко улучшилась.


Типы материалов термоинтерфейса (TIM)

Существует несколько общих методов интерфейса и соответствующих материалов термического интерфейса (TIM). Многие из следующих TIM можно найти в разделе аксессуаров на этом веб-сайте.

Припои
Припои можно использовать между металлами (если они пригодны для пайки) и на металлизированных поверхностях модуля Пельтье.См. Способы монтажа ТЕС. Припой является превосходным ТИМ, поскольку теплопроводность большинства припоев составляет от 30 до 60 Вт / м-К. Кроме того, припой – это средство механического монтажа, исключающее внешний крепеж. Необходимо соблюдать осторожность, чтобы избежать образования пустот (карманов для воздуха или флюса) в припое. Наиболее распространенным припоем является Sn63 / Pb37, который имеет теплопроводность 50,9 Вт / м-К и точку плавления эвтектики 183 ° C. Ознакомьтесь с нашими припоями здесь.

RT или NRT Жидкие металлы
Сплавы жидких металлов при комнатной и близкой к комнатной температуре
Эти продукты являются новыми на рынке, поэтому информации о долгосрочном использовании и рабочих характеристиках не так много.В основном это металлические сплавы на основе галлия, которые являются жидкими (например, ртуть) при комнатной температуре или близкой к ней. Такие продукты, как Liquid Pro с сайта www.coollaboratory.com, имеют теплопроводность, аналогичную теплопроводности жидкого галлия при 29 Вт / м-К. В отличие от ртути, он также считается нетоксичным. Следует отметить, что продукты на основе галлия ни в коем случае нельзя использовать с алюминием, поскольку он агрессивно реагирует.

Теплопроводящие клеи
Наиболее распространенная форма этих клеев – эпоксидная основа.Обычно они заполнены сверхмелкозернистыми частицами теплопроводящего материала (ов), например оксида алюминия, нитрида бора, алюминия, меди и серебра. Подобно припоям, клеи также служат средством механического крепления. Клеи также обладают некоторыми преимуществами, такими как полугибкие составы, которые могут справляться с несоответствием CTE, возникающим в результате соединения различных материалов. Типичная теплопроводность варьируется от 1,5 Вт / м-К в керамических наполнителях до 8 Вт / м-К в версиях с серебряным наполнителем. См. Наши теплопроводящие клеи Arctic Silver здесь.

Термопаста и компаунды
Это наиболее распространенная форма TIM с буквально тысячами продуктов на выбор. Существует жидкость-носитель, такая как силикон (или другая синтетическая жидкость), которая заполнена микрочастицами теплопроводных материалов, таких как оксид цинка, оксид алюминия, нитрид бора или серебро. Диапазон теплопроводности от 0,8 Вт / м-К до 7,5 Вт / м-К. Ознакомьтесь с нашими термопастами и смазками Arctic Silver здесь.

Материалы с фазовым переходом (PCM)
Когда материалы с фазовым переходом нагреваются до заданной температуры перехода, материал значительно размягчается до физического состояния, близкого к жидкому, при котором теплопроводный материал немного расширяется в объеме.Это объемное расширение заставляет материал течь и замещать микроскопические пустоты, имеющиеся между двумя поверхностями. Благодаря заполнению воздушных зазоров между тепловыми поверхностями высокая степень смачивания двух поверхностей сводит к минимуму контактное сопротивление. Многие материалы с фазовым переходом предлагаются в форме подушек или лент, что делает нанесение быстрым и легким. Основным недостатком материалов с фазовым переходом является то, что продукт необходимо нагреть выше температуры перехода (обычно около 50 ° C), чтобы обеспечить хорошую теплопроводность, а иногда теплопроводность может быть значительно ниже этой температуры перехода.Следовательно, TIM с фазовым переходом могут не подходить для многих приложений, в которых задействованы температуры охлаждения. Диапазон теплопроводности от 0,5 Вт / м-К до 4,0 Вт / м-К.

Термопленки, прокладки и фольга
Термопленки, прокладки и фольга привлекательны тем, что наносятся быстро и легко. Во многих случаях материалы доступны либо высеченными по размеру, либо легко разрезаются по размеру ножницами, а затем просто накладываются.

Многие термопласты представляют собой просто подложку, такую ​​как тонкая алюминиевая или медная фольга с термопастой или компаундом, нанесенной с обеих сторон оптимальной толщины.Следовательно, можно ожидать, что теплопроводность будет близка к теплопроводности термопасты или компаунда, нанесенного на основу. Эти листы на основе фольги являются наиболее экономичными и быстро устанавливаемыми ТИМами и часто используются в крупносерийном производстве из-за экономии времени без ущерба для теплопроводности. Доступны версии на основе каптона, если TIM должен иметь электрическую изоляцию. Диапазон теплопроводности от 1,0 Вт / м-К до 8,0 Вт / м-К. Смотрите наши термопленки здесь.

Есть фольга на основе графита, которая также доступна в виде листа и может быть легко разрезана по размеру.Этот TIM требует большой силы сжатия для эффективной работы. Распространенной жалобой на эти пленки является то, что графит неэластичен и, следовательно, не заполняет все микропустоты надежно в течение более длительных периодов времени. Это особенно ярко проявляется при значительном тепловом цикле. Обычно мы используем графитовую фольгу для высокотемпературных применений, где другие термические соединения не выдержат, например, в наших продуктах TEG для термоэлектрических генераторов. Графитовую фольгу TIM можно найти здесь.

Силикон и другие аналогичные эластомеры доступны в виде листов с керамическими частицами и / или волокнами, встроенными в них для увеличения теплопроводности. Они особенно хороши для временных сборок или настроек, так как удаление TIM простое и часто используется повторно. Существуют также версии этих листов для заполнения зазоров, например, сделанные на сайте www.fujipoly.com. Эти ТИМы требуют от умеренного до высокого сжимающего усилия для эффективной работы. Коэффициент теплопроводности колеблется от 0,5 Вт / м-К до 3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх