Трехходовые регулирующие клапаны: Трехходовой регулятор давления TRV-3 купить, цена | Клапан регулирующий 3 х ходовой

Содержание

Трехходовой регулирующий клапан

Трубопроводная арматура выполняет разные задачи, к которым относится перенаправление потоков и смешивание рабочих сред для достижения оптимальной температуры. В эту категорию входят трехходовые регулирующие клапаны, предназначенные для водоснабжения, отопления и прочих технологических процессов в промышленности. Устанавливается трехходовой регулирующий клапан на определенные участки труб для смешения потоков, проходящих по разным трубопроводам.

Описание и конструкция

Устанавливается регулирующий трехходовой клапан в тех участках, где требуется разбить циркуляционный поток на контур с переменным и постоянным гидравлическим режимом. Постоянный поток необходим для потребителей, получающих в определенном объеме качественный теплоноситель. Переменный поток необходим объектам, где качественные показатели не имеют особого значения. То есть потребители получают определенное качество и количество теплоносителя. Клапан позволяет изменять расход и напор.
По принципу работы регулирующие трехходовые клапаны бывают разделительными и смесительными. У смесительного типа есть 2 входа, 1 выход. Он смешивает два потока для снижения температуры теплоносителя.

Разделительный клапан нужен для деления основного потока на два, из-за чего у него есть один вход и два выхода. Его часто ставят в системе горячего водоснабжения, обвязке воздухонагревателя.


Внутри смесительного устройства имеется шток с конусом, который находится в центре, перекрывая седло основного прохода и регулируя расход и давление рабочей среды.
Современные трехходовые клапаны по типу управления бывают электрическими и ручными. Ручной тип имеет сходство с простым шаровым краном, оснащенным тремя патрубками. В ИТП распределение тепла осуществляется электрическими автоматизированными системами.
Определяется трехходовой клапан по давлению рабочей среды и диаметру подводящего трубопровода. Трехходовой клапан различается по способу монтажа с трубами (резьбовой, фланцевый и приварной) в зависимости от модели.

Преимущества трехходового регулирующего клапана

Основными достоинствами механизма являются компактные параметры, ассортимент изделий, точная регулировка, высокая надежность и длительная эксплуатация.

Технические характеристики

Для правильного выбора трехходового клапана необходимо учитывать следующие особенности:

  • число контуров системы отопления;
  • диаметр входного патрубка;
  • конструктивные особенности регулировки;
  • пропускную способность, рабочее давление системы;
  • температуру перемещаемой среды;
  • материал изготовления клапана, тип присоединения.

Устанавливается трехходовой клапан в направлении потока перемещаемой среды (на корпусе нанесена стрелка), привод которого не должен находиться ниже корпуса клапана. 

Трехходовые смесительные регулирующие клапаны TRV-3

Управление клапаном осуществляется электрическим исполнительным механизмом (электропривод). Усилие, развиваемое электроприводом, передается на плунжер, который перемещается вверх и вниз, изменяя площадь проходного сечения в затворе и регулируя расход рабочей среды.

Особенности:
  • высокая надежность и большой ресурс;
  • адаптация к сложным условиям работы;
  • простота конструкции;
  • плавное регулирование расхода;
  • точное выполнение заданной характеристики с момента открытия клапана;
  • устойчивость к перепадам давления;
  • низкий уровень шума и отсутствие вибраций;
  • гарантированная работоспособность при высоких температурах рабочей среды (до 150 °С).
Наименование параметров, единицы измеренияЗначение параметров
Условный диаметр, DN, мм1520253240506580100
Условная пропускная
способность, Kvs м3
0,63
1,25
1,6
2,5
4,0
5
6,3
8
10
12,5
16
20
25
31,5
40
50
63
80
100
125
160
Пропускная характеристикаА - АВ, равнопроцентная; В - АВ, линейная
Номинальное давление PN, бар (МПа)16 (1,6)
Ход штока, мм1430/25*
Тип присоединенияфланцевый
Рабочая средаВода с температурой до 150°С, 30% водный раствор этиленгликоля
Материалы: 
-корпус клапанаЧугун
-запорный узел (плунжер)Латунь CW614N
-шток и седло канала ВКоррозионностойкая сталь ГОСТ 5632
-уплотнения разгрузочной камерыРезина термостойкая из EPDM
-уплотнение штокаПрокладки из EPDM каучука

* Только для клапанов с приводом с наличием датчика положения с токовым сигналом 4-20mA

Характеристика регулирования

Устройство клапана

Устройство клапана c приводом ST mini

Устройство клапана c приводом REGADA ST 0 ; STR 0PA ; STR 0.1PA
ПозицииНаименование деталей
1Корпус клапана
2Плунжер
3Уплотнительные кольца плунжера
4Седло
5Шток
6Уплотнительное кольцо седла
7Втулка
8Уплотнение втулки
9Уплотнительный узел штока
10Кольцо стопорное
11Контргайка
12Винт стопорный
13Переходник
14Электропривод
15Винт крепежный
16Крышка
Монтажные положения

Монтажные положения клапана с приводом REGADA
(Прямолинейные участки до и после клапана не требуются)

Габаритные размеры

Наименование параметров, единицы измеренияЗначения параметров
Условный диаметр DN, мм1520253240506580100
Длина L, мм130150160180200230290310350
Высота, Н1, мм65707595100100120130150
Высота клапана Н: 
- с типом привода ST mini 472.0, мм /не более400405415423435445   
- с типом привода ST 0 490.0, мм / не более    535555575595625
- с типом привода STR 0PA 430.1, мм / не более400405415423435445   
- с типом привода STR 0.1PA 438.1, мм / не более      575595625
- с типом привода AVF 234S F132, мм /не более402410420428440450525545575
Масса клапана:         
с типом привода ST mini 472.0, кг /не более6,17810,612,114,6   
- с типом привода ST 0 490.0, кг /не более    14,216,2253340
- с типом привода STR 0PA 430.1, кг /не более8,19,210,212,814,316,8   
- с типом привода STR 0.1PA 438.1, кг / не более      27,531,537,3
- с типом привода AVF 234S F132, кг /не более10,111,212,214,816,318,8283237,5

Danfoss Клапаны регулирующие седельные и электроприводы

Клапаны регулирующие седельные — это сантехническая арматура, применяемая для регулировки давления в различных трубопроводных системах. Эти устройства используются для регулировки потока воды в водопроводах горячего и холодного водоснабжения, паропроводах, воздухо- и газопроводах и других транспортных систем подачи жидкостей и газов. Изделия этого типа нашли широкое применение в теплоэнергетике, пищевой и легкой промышленности в других технических сферах.

Устройство и разновидности

Устройство регулирующего седельного клапана достаточно простое. Каждый из них имеет внутри подвижный элемент, именуемый плунжером, он изменяет сечение прохода, смещаясь вдоль потока воды или другой среды. Плунжеры бывают игольчатыми, тарельчатыми, а также стержневыми. Устройства такого типа производятся различными компаниями, существует множество разновидностей, типов и конструкций. Прежде всего, они отличаются способом регулировки – оснащенные электрическим приводом, самые современные, и на ручном управлении.

По количеству регулирующих запоров, изделия делят на односедельные и двухседельные. В двухседельных запоры, 2 штуки, расположены на одной оси и работают параллельно. В разнообразных системах теплоснабжения используют двухходовые проходные, угловые и трехходовые седельные клапаны. Первый вариант вставляется в прямой отрезок трубопровода, он не изменяет направление течения. Угловые поворачивают поток на 90°. Трехходовые имеют 3 патрубка — их применяются для смешивания транспортируемых сред. По способу соединения с трубой, регулирующие клапаны, так же как и запорные, бывают фланцевые, резьбовые муфтовые, и врезные.

Электроприводы регулирующих клапанов

Электропривод клапана регулирующего седельного — ключевой элемент устройства. Как и в поворотном клапане, электропривод создает за счет работы электродвигателя усилие, но передает его не на вращение, а на поршень, создавая поступательное движение, изменяя тем самым сечение прохода. Кавитация, процесс образования пузырьков жидкости, который сопровождается гидравлическими ударами, нейтрализуется за счет специальных отверстий в седле. Используя уплотнение плунжера, электрический привод может создавать значительное усилие и качественную регулировку потока, несмотря на весьма высокие образующиеся давления.

Электроприводы от компании DANFOSS

В качестве примера разновидностей электроприводов рассмотрим варианты этих устройств к клапанам от компании DANFOSS. Эта датская фирма один из европейских лидеров по производству различной сантехнической арматуры. Седельный регулирующий клапан DANFOSS заслужил хорошую репутацию среди российских потребителей. Электроприводы к изделиям датского производителя бывают различных типов, они подразделяются по принципу действия, конструкции, наличию ДУ, быстродействию и другим параметрам.

По принципу действия различают редукторные приводы, термоэлектрические и электрогидравлические. Первый тип привода самый распространенный и движение запора осуществляется за счет редуктора. Термоэлектрический привод срабатывает за счет расширения вследствие нагрева электрической спиралью рабочего вещества в сильфоне. Такие приводы применяются в вентиляционных установках. Электрогидравлические приводы работают за счет давления в рабочей жидкости, создаваемого насосом.

Величина хода штока привода DANFOSS меняется от 2 мм до 50, а усилие, которое создают некоторые приводы этой фирмы, достигает 5000 ньютон! Напряжение питания электроприводов 220 или 24 вольта. Управляющие сигналы устройства бывают двухпозиционные, трехпозиционные и аналоговые. В некоторых моделях предусмотрена защитная функция в виде возвратной пружины, которая перекрывает или наоборот открывает поток при отключении в здании электричества. Быстродействие электроприводов также достаточно сильно разнится — есть приводы, в которых шток перемещается за 3-4 секунды (быстрые), а есть такие, где скорость перемещения составляет 1 миллиметр за 8-15 секунд (медленные).

Стоимость седельного регулирующего клапана

Наша компания предлагает приобрести различные модели запорной и регулирующей трубной арматуры. В каталоге представлены описания продукции от различных производителей, включая устройства от DANFOSS. Их седельный регулирующий клапан цена которого в нашем интернет магазине одна из самых доступных на рынке, пользуется большим спросом.

Если вы хотите приобрести арматуру для любых трубопроводов, но у вас есть дополнительные вопросы — просто позвоните к нам! Наши сотрудники окажут всю необходимую поддержку, предоставят документацию и помогут подобрать самые лучшие устройства, наиболее полно удовлетворяющие вашим требованиям. У нас огромный выбор седельных регулирующих клапанов!

Клапаны регулирующие трехходовые. L3S, M3F, L3FM, M3FM, h4F, G3F

Клапаны регулирующие трехходовые (вода)

L3S__1_2__2______10" Ру 10

M3F-SFL___15-40____16"

M3F-SFL Ду15-40  Ру16

L3F____65-150_____10"

L3F Ду 65-150 Ру 10

L3FM____200_____10_____250-300_____6";

L3FM Ду 200, Ру 10; Ду 250-300, Ру 6

M3F-FL___15-20____16"

M3F-FL Ду15-20; Ру16

M3F____25-65_____16"

M3F Ду 25-65; Ру 16

M3F____80-150_____10"

M3F Ду 80-150; Ру 10

M3FM____100-200_____10_____250-300_____6"

M3FM Ду 100-200, Ру 10; Ду 250-300, Ру 6

G3F____80-150_____16"

G3F Ду 80-150; Ру 16

G3FM____100-200_____16_____250-300_____10"

G3FM Ду 100-200, Ру 16; Ду 250-300, Ру 10

G3FM-T____200-300____16_____350-600____10"

G3FM-T Ду 200-300 Ру 16, ДУ 350-600 Ру 10

h4F____25-50_____40"

h4F Ду 25-50; Ру 40

Клапаны регулирующие трехходовые для ВОДЫ.

Клапан регулирующий трехходовой латунный L3S, 1/2  Ру 10.  Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики. Максимальное рабочее давление 10 бар. Максимальная рабочая температура 120С. Регулировочная характеристика линейная. Количество седел два односедельчатых. Протечка 0,5 % Kv. Присоединение к приводу. Присоединения внутренняя резьба BSP. Управляется: электроприводами термостатами пневмоприводами. VB-90, VBA-90, V, AV V2, V4, V8 S16, S25

M3F-SFL___15-40____16". Клапаны регулирующие трехходовые для ВОДЫ. Клапан регулирующий трехходовой чугунный односедельчатый M3F-SFL Ду15-40; Ру16. Применение: для регулирования расхода горячей и холодной воды в системах теплоснабжения. Технические характеристики<br /><br />Максимальное рабочее давление 16 бар. Максимальная рабочая температура 150С. Регулировочная характеристика линейная. Количество седел два односедельчатых. Протечка герметичен . Присоединение к приводу . Присоединения резьбовое. Управляется: электроприводами VB-30; VBA-30. 

Клапан регулирующий трехходовой L3F Ду 65-150, Ру 10. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков.. Технические характеристики. Максимальное рабочее давление 10 бар. Максимальная рабочая температура 120С. Регулировочная характеристика линейная. Протечка 0,5 %. Присоединение к приводу. Присоединения фланцевое. Управляется: электроприводами термостатами пневмоприводами V, AV V4, V8 S16, S2.

 L3FM____200_____10_____250-300_____6". Клапаны регулирующие трехходовые для ВОДЫ. Клапан регулирующий трехходовой L3FM Ду 200, Ру 10; Ду 250-300, Ру 6. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики. Максимальное рабочее давление 200 - 10 бар ;250-300 6 бар. Максимальная рабочая температура 120С. Регулировочная характеристика линейная. Протечка 0,5 % Kv. Присоединение к приводу. Присоединения фланцевое .Управляется: электроприводами MT90, MT90A.

 Клапан регулирующий трехходовой чугунный односедельчатый M3F-FL Ду15-20; Ру16. Применение: для регулирования расхода горячей и холодной воды в системах теплоснабжения. Технические характеристики. Максимальное рабочее давление 16 бар. Максимальная рабочая температура 150С. Регулировочная характеристика линейная. Количество седел два односедельчатых. Протечка герметичен. Присоединение к приводу. Присоединения фланцевое. Управляется: электроприводами VB-30; VBA-30

Клапан регулирующий трехходовой M3F Ду 25-65; Ру 16. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики. Максимальное рабочее давление 16 бар. Максимальная рабочая температура 150С. Регулировочная характеристика квадратичная/линейная. Количество седел два односедельчатых. Протечка  0,5 % Kv.  Присоединения фланцевое. Управляется: электроприводами термостатами пневмоприводами VB-90, VBA-90, V, AV,V2, V4, V8, S16, S25

Клапан регулирующий трехходовой M3F Ду 80-150; Ру 10. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики. Максимальное рабочее давление 10 бар. Максимальная рабочая температура 120С. Регулировочная характеристика линейная. Количество седел два односедельчатых. Протечка 0,5 % Kv. Присоединения фланцевое. Управляется: электроприводами термостатами пневмоприводами V, AV, V4, V8, S16, S25.

Клапан регулирующий трехходовой M3FM Ду 100-200, Ру 10; Ду 250-300, Ру 6. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков.< Технические характеристики. Максимальное рабочее давление 100-200  10 бар, 250-300  6 бар. Максимальная рабочая температура 120С. Регулировочная характеристика линейная. Количество седел два односедельчатых. Протечка 0,5 % Kv. Присоединения фланцевое. Управляется: электроприводами MT90, MT90A.

G3F____80-150_____16". Клапаны регулирующие трехходовые для ВОДЫ. Клапан регулирующий трехходовой G3F Ду 25-50; Ру 25. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики<br /><br />Максимальное рабочее давление 25 бар. Максимальная рабочая температура 300С. Регулировочная характеристика квадратичная/линейная. Количество седел два односедельчатых. Протечка 0,5 % Kv. Присоединения фланцевое. Управляется: электроприводами термостатами пневмоприводами VB-90, VBA-90, V, AV<br />V2, V4, V8, S16, S25 .

Клапан регулирующий трехходовой G3FM Ду 100-200, Ру 16; Ду 250-300, Ру 10. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики .Максимальное рабочее давление 100-200   16 бар 250-300  10 бар. Максимальная рабочая температура 120С<. Регулировочная характеристика линейная. Количество седел два односедельчатых. Протечка 0,5 % Kv.   Присоединения фланцевое. Управляется: электроприводами MT90, MT90A.

Подробные технические характеристики G3FM-T____200-300____16_____350-600____10". Клапаны регулирующие трехходовые для ВОДЫ. Клапан регулирующий трехходовой G3FM-T Ду 200-300 Ру 16, ДУ 350-600 Ру 10. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков. Технические характеристики. Максимальное рабочее давление  Ду 200-300 - 16 бар Ду 350-600 - 10 бар . Максимальная рабочая температура 150С. Регулировочная характеристика линейная. Тип конструкции поворотный сегмент. Протечка  0,5 % Kv. Присоединение к приводу ISO-фланец. Присоединения фланцевое. Управляется: электроприводами RCEL. Подробные технические характеристики. h4F____25-50_____40"></a>Клапаны регулирующие трехходовые для ВОДЫ. Клапан регулирующий трехходовой h4F Ду 25-50; Ру 40. Применение: для регулирования расхода масел, горячей и холодной воды в системах теплоснабжения путем смешения или разделения потоков.

Технические характеристики. Максимальное рабочее давление 40 бар. Максимальная рабочая температура 350С. Регулировочная характеристика квадратичная/линейная. Количество седел два односедельчатых. Протечка 0,5 % Kv. Присоединение к приводу. Присоединения фланцевое.

Управляется: электроприводами термостатами пневмоприводами VB, VBA, V, AV, V2, V4, V8, S16, S25. Клапаны регулирующие реверсивные.

Регулирующий клапан трёхходовой. Устройство, монтаж, нормы

   Трёхходовой клапан с электроприводом — это трубопроводная арматура, предназначенная для качественного и количественного регулирования. Трёхходовые клапаны выполняют функцию исполнительного устройства в схемах автоматизации систем теплоснабжения зданий. Управляют клапаном с помощью электропривода, по сигналу электронного регулятора, либо от центральной системы диспетчеризации. Работа трёхходового клапана основана на создании в циркуляционном кольце контуров с постоянным и переменным гидравлическим режимом, за счёт разделения одного потока или смешения двух потоков теплоносителя.

Сфера применения :
 - В автономных котельных трёхходовые клапаны применяются для управления системами отопления и горячего водоснабжения.
 - В схемах обвязки приточно-вытяжных установок, трёхходовые клапаны используют для управления процессом нагрева и охлаждения воздуха.
 - В бытовых двухконтурных котлах трёхходовой клапан, переключает подачу теплоносителя в контур с большим приоритетом, например для пикового нагрева воды или покрытия отопительной нагрузки.
 - В тепловых пунктах присоединённых к сетям централизованного теплоснабжения, смесительный трёхходовой клапан широкого применения не нашёл из-за невозможного ограничения расхода теплоносителя при сохранении коэффициента смешения, а разделительный трёхходовой клапан из-за перепуска теплоносителя из подающего трубопровода, в обратный.

Устройство трёхходового клапана

   Устройство трёхходового клапана седельной конструкции — на поступательно перемещающемся штоке закреплен затвор, который в крайнем верхнем положении перекрывает патрубок A, полностью открывая патрубок B, а в крайнем нижнем положении перекрывает патрубок B, полностью открывая патрубок A. Независимо от положения штока, расход теплоносителя через патрубок AB не изменяется (при условии правильного подбора клапана). Седельные трёхходовые клапаны управляются линейными электроприводами с поступательно перемещающимся штоком. Выбирая привод регулирующего клапана, следует иметь ввиду, что у большинства седельных клапанов при перемещении штока в низ, прямой ход (A) - открывается, а байпасный (B) - закрывается.
   Конструкция затвора седельного клапана зависит от необходимого закона регулирования по каждому из ходов и того предназначен клапан для разделения, либо для смешения потока. Порты B и A в седельных клапанах, могут иметь различную конфигурацию пары затвор – седло, что позволяет создать различную регулировочную характеристику для каждого из портов в зависимости от потребности объекта регулирования. По сравнению с поворотным, седельный трёхходовой клапан обеспечивает более высокую точность регулирования, большую плотность перекрытия потока, способен работать при высоких температурах и перепадах давления регулируемого потока, но и цена его значительно выше.

Устройство поворотного трёхходового клапана:
   Устройство трёхходового клапана поворотной конструкции — на радиально вращающемся штоке c углом поворота 90° закреплён затвор, перекрывающий в крайнем левом положении порт B, а в крайнем правом – порт A. Независимо от положения штока, расход теплоносителя через порт AB остаётся постоянным (при условии правильного подбора клапана).
Поворотные трёхходовые клапаны управляются ротационными приводами с радиально вращающимся штоком.

   В конструкции трёхходового клапана предусмотрено три патрубка (хода):
 1. прямой ход, обозначается литерой - A – расход воды может изменяться в пределах от нулевого до максимального (AB) – патрубок может быть полностью перекрыт;
 2. байпасный ход (перпендикулярный), обозначается литерой – B – расход воды может изменяться в пределах от нулевого до максимального (AB) – патрубок может быть полностью перекрыт;
 3. общий вход/выход, обозначается литерами - AB – расход воды колеблется в зависимости от авторитета клапана, но полностью патрубок перекрыт быть не может.

   По типу присоединения к трубопроводу выпускают фланцевые трёхходовые клапаны и резьбовые. На трубопроводах с диаметром условного проходом до 65 мм, рабочим давлением до 16 бар и температурой до 130°C, как правило, устанавливают клапаны с резьбовым присоединением, а в остальных случаях с фланцевым.

Принцип работы трёхходового клапана

   Принцип работы трёхходового клапана заключается в разбивке циркуляционного кольца на контур с постоянным и переменным гидравлическим режимом. К патрубку с постоянным гидравлическим режимом присоединяют потребителей нуждающихся в качественном регулировании, а к патрубкам с переменным режимом, ветви с количественным регулированием.
   Основным отличием в работе трёхходовых клапанов, по сравнению с двухходовыми клапанами, является то, что при любом положении штока, расход через патрубок с постоянным гидравлическим режимом практически не изменяется, — клапан не может прекратить подачу теплоносителя. Патрубок с постоянным гидравлическим режимом на схемах обозначают литерами AB, а патрубки с переменным режимом литерами А и В.
   Упростить для понимания принцип работы трёхходового клапана, можно схематически заменив его двумя двухходовыми клапанами, работающими реверсивно, то есть открытие одного - приводит к закрытию другого. На схеме смесительный трёхходовой клапан заменён двумя двухходовыми клапанами.

    Все трёхходовые клапаны, по принципу действия делятся на смесительные и разделительные.
   Смесительный трёхходовой клапан — имеет два входа и один выход. Применяется, для качественного регулирования в системах отопления, за счёт смешения двух потоков теплоносителя с различной температурой. Качественное регулирование с поддержанием заданной температуры теплоносителя выходящего из порта AB, достигается изменением пропорции между теплоносителем поступающим из порта А и порта B. Некоторые типы смесительных трёхходовых клапанов, при соответствующей схеме установки, обеспечивают разделение потока.
   Разделительный трёхходовой клапан (распределительный) — имеет один вход и два выхода. Применяется, как правило, для количественного регулирования за счёт разделения потока теплоносителя, в схемах подогрева воды систем горячего водоснабжения, а также в узлах обвязки воздухонагревателей и воздухоохладителей. Вход распределительного клапана обозначают литерами AB, а выходы A и В.

Схемы установки трёхходовых клапанов

Схемы с трёхходовыми клапанами применяют в узлах управления:
   - Подключенных к безнапорному коллектору;
   - С низким перепадом давлений на вводе от источника тепла;
   - Температурным режимом источника тепла идентичным температурному режиму потребителя;
   - С необходимостью поддержания постоянной циркуляции в одном из контуров;
   - С необходимостью качественного регулирования за счёт смешения двух потоков теплоносителя;
   - С необходимостью количественного регулирования за счёт разделения потока теплоносителя.

   В тепловых пунктах присоединённых к сетям централизованного теплоснабжения, схемы установки смесительных трёхходовых клапанов не нашли широкого применения, из-за невозможного ограничения расхода теплоносителя c одновременным сохранением коэффициента смешения, а разделительные трёхходовые клапаны, из-за перепуска теплоносителя из подающего трубопровода в обратный.

 

   Обеспечивает качественное регулирование у потребителя. При этом расход теплоносителя у потребителя постоянный, а расход через источник может быть полностью перекрыт. Применяется в котельных для управления системой отопления присоединённой к безнапорному коллектору или гидравлическому разделителю (гидравлической стрелке). Насос во вторичном контуре обеспечивает циркуляцию через потребителя и через источник.

 

 

 

  В случае прямого присоединения к источнику тепла на байпасном трубопроводе трёхходового клапана, подключённому к порту B, следует установить балансировочный клапан с гидравлическим сопротивлением, равным сопротивлению источника тепла. В противном случае расход теплоносителя в патрубке AB может существенно изменяться в зависимости от хода штока. Также следует иметь ввиду, что данная схема не исключает полного прекращения циркуляции теплоносителя через источник тепла, при подключении без гидравлического разделителя и собственного циркуляционного насоса в контуре источника.

 


 

   Не рекомендуется подключение трёхходового клапана по данной схеме к напорному коллектору или тепловым сетям, без устройств дросселирующих избыточный напор. В противном случае расход теплоносителя через патрубок AB может изменяться в широком диапазоне.

 

 


 

  Если по условиям работы источника допускается или даже приветствуется перегрев обрата, избыточный напор устраняют устройством перемычки параллельной подмесу трёхходового клапана в контуре источника.

 

 

 

Схема установки разделяющего трёхходового клапана

    Обеспечивает количественное регулирование у потребителя - за счёт изменения расхода теплоносителя. Применяется, если по условиям эксплуатации источника тепла допускается перепуск теплоносителя в обратный трубопровод и не допускается прекращение циркуляции в контуре источника. Данная схема установки трёхходового клапана, получила широкое применение в узлах нагрева воды и воздуха, подключённых от автономной котельной. Для увязки гидравлических контуров, потери напора на балансировочном клапане в байпасной линии, должны равняться потерям напора у потребителя. Данная схема установки трёхходового клапана предназначена для подключения к трубопроводу с избыточным напором. Циркуляция теплоносителя в контуре потребителя обеспечивается за счёт избыточного напора созданного циркуляционным насосом в контуре источника тепла.

 Схемы установки смешивающего трёхходового клапана на разделение

   Обеспечивает количественное регулирование у потребителя с использованием смесительного трёхходового клапана. Применяется если по условиям эксплуатации не допускается прекращение расхода в контуре источника, а перепуск теплоносителя из подающего трубопровода в обратный - допустим. Подобные схемы подключения трёхходовых клапанов получили широкое распространение в обвязке воздухонагревателей и воздухоохладителей, а также в узлах подогрева воды установленных в автономных котельных.
На подмешивающем патрубке трёхходового клапана рекомендуется установить балансировочный клапан с гидравлическим сопротивлением равным, сопротивлению потребителя. Циркуляция через потребителя и байпас осуществляется за счёт избыточного напора в контуре источника. При правильном подборе клапана и гидравлической увязке байпаса с контуром потребителя, расход через источник тепла постоянный, а в контуре потребителя - переменный.


   Так как, поток воды движется в направлении противоположном направлению потока в смешивающем клапане, на некоторых клапанах возможно увеличение шума и вибрации, а также снижение допустимого перепада давлений на клапане. Схема установки смешивающего трёхходового клапана для разделения к гидравлической стрелке При подключении узла с разделяющим трёхходовым клапаном к источнику тепла непосредственно или безнапорному коллектору, в подающем или обратном трубопроводе необходимо установить циркуляционный насос. Насос может быть общим для нескольких контуров.

 

  Схему подключения трёхходового клапана разделяющего поток, с дополнительным байпасом в контуре потребителя, параллельным подмешивающей линии, используют при условии превышения температурного режима источника над температурным режимом потребителя. Особенность данной схемы в том, что расходы в контуре источника и потребителя будут постоянными, а к потребителю не поступит перегретый теплоноситель. У потребителя будет обеспечено качественное регулирование. Для работы данной схемы необходима установка насоса в контуре потребителя и в контуре источника.

 

 

Технические характеристики трёхходовых клапанов

Пропускная способность трёхходового клапана Kvs — значение коэффициента пропускной способности Kvs численно равно расходу воды через клапан в м³/ч с температурой 20°C при котором потери давления на нём составят 1бар. Как правило, значение коэффициента пропускной способности по ходу A-AB и B-AB у трёхходового клапана одинаково.

DN трёхходового клапана — номинальный диаметр отверстия в присоединительных патрубках. Все три патрубка клапана имеют одинаковый номинальный диаметр. Значение DN применяется для унификации типоразмеров трубопроводной арматуры. Фактический диаметр отверстия может незначительно отличаться от номинального в большую или меньшую сторону. Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр Ду трёхходового клапана. Ряд условных проходов DN трубопроводной арматуры регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)».

PN трёхходового клапана — номинальное давление — наибольшее избыточное давление рабочей среды с температурой 20°C, при котором обеспечивается длительная и безопасная эксплуатация. Альтернативным обозначением номинального давления PN, распространённым в странах постсоветского пространства, было условное давление Ру клапана. Ряд номинальных давлений PN трубопроводной арматуры регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».

Динамический диапазон регулирования, это отношение наибольшей пропускной способности регулирующего клапана при полностью открытом затворе (Kvs) к наименьшей пропускной способности (Kv), при которой сохраняется заявленная расходная характеристика. Динамический диапазон регулирования ещё называют регулирующим отношением.

Так, например, динамический диапазон регулирования клапана равный 50:1 при Kvs 100, означает, что клапан может управлять расходом в 2м3/ч, сохраняя зависимости присущие его расходной характеристике.

Большинство регулирующих клапанов обладают динамическими диапазонами регулирования 30:1 и 50:1, но существуют и клапаны с очень хорошими регулирующими свойствами, их диапазон регулирования равен 100:1.

Авторитет трёхходового клапана — равен отношению потерь напора на клапане к потерям напора на клапане и регулируемом участке. Значение авторитета для трёхходовых клапанов определяет диапазон колебания суммарного расхода через порт АB.

10% отклонение мгновенного расхода через порт AB во время движения штока обеспечивается при следующих значениях авторитета:
 A+ = (0.8-1.0) – для клапана с линейно/линейной характеристикой.
 A+ = (0.3-0.5) - для клапана с логарифмическо/линейной характеристикой.
 A+ = (0.1-0.2) - для клапана с логарифмическо/логарифмической характеристикой.

Для трёхходовых клапанов авторитет определяется для каждого из двух циркуляционных колец проходящих через порты A-AB и B-AB.

Расходная характеристика трёхходового клапана отображает зависимость изменения относительного расхода через клапан, от изменения относительного хода штока регулирующего клапана, при постоянном перепаде давления на нём. Тип расходной характеристики определяет форма пары затвор - седло.
Расходная характеристика регулирующего клапана

Линейная расходная характеристика — одинаковые приросты относительного хода штока вызывают одинаковые приросты относительного расхода.

Равнопроцентная расходная характеристика (логарифмическая) — зависимость относительного прироста расхода от относительного прироста хода штока - логарифмическая.

Параболическая расходная характеристика — зависимость относительного прироста расхода от относительного хода штока подчиняется квадратичному закону (проходит по параболе).

Так как у трёхходового клапана два затвора и два седла — расходных характеристик у него тоже две, первой обозначают характеристику по прямому ходу - (A-AB), а второй по перпендикулярному - (B-AB).

 

Линейно/линейная характеристика трёхходового клапана:

  Суммарный расход через патрубок АВ постоянен лишь при авторитете клапана равном 1, что обеспечить практически невозможно. Работа трёхходового клапана с авторитетом равным 0.1 приведёт к колебаниям суммарного расхода при перемещении штока, в диапазоне от 100% до 180%. Поэтому клапаны с линейно/линейной характеристикой применяются в системах нечувствительных к колебаниям расхода, либо в системах с авторитетом клапана не менее 0.8.

 

 

 

Логарифмическо/логарифмическая характеристика трёхходового клапана:

  Минимальные колебания суммарного расхода через патрубок AB в трёхходовых клапанах с логарифимическо/логарифмической расходной характеристикой наблюдаются при авторитете клапана равном 0.2. При этом, снижение авторитета, относительно указанного значения - увеличивает, а повышение – уменьшает суммарный расход через патрубок АВ. Колебание расхода в диапазоне авторитетов от 0.1 до 1 составляет от +15% до -55%.

 

 

 

 

Логарифмическо/линейная характеристика трёхходового клапана:


   Трёхходовые клапаны с логарифмическо/линейной расходной характеристикой применяются если в циркуляционных кольцах проходящих через патрубки A-AB и B-AB необходимо регулирование по различным законам. Стабилизация расхода во время движения штока клапана происходит при авторитете равном 0.4. Колебание суммарного расхода через патрубок AB в диапазоне авторитетов от 0.1 до 1 составляет от +50% до -30%. Регулирующие клапаны с лограрифмическо/линейной расходной характеристикой получили широкое применение в узлах управления системами отопления и теплообменными аппаратами.

 

 

 

Рассчёт и подбор

  Бытует мнение, что подбор трёхходового клапана не требует предварительных расчётов. Это мнение основано на предположении, что суммарный расход через патрубок AB - не зависит от хода штока и всегда постоянен. В действительности, расход через общий патрубок AB колеблется в зависимости от хода штока, а амплитуда колебания зависит от авторитета трёхходового клапана на регулируемом участке и его расходной характеристики.

Расчёт трёхходового клапана выполняют в следующей последовательности:
 1. Подбор оптимальной расходной характеристики.
 2. Определение регулирующей способности (авторитета клапана).
 3. Определение пропускной способности и номинального диаметра.
 4. Подбор электропривода регулирующего клапана.
 5. Проверка на возникновение шума и кавитации.

Выбор расходной характеристики:

   Зависимость расхода через клапан от хода штока называют расходной характеристикой. Тип расходной характеристики определяет форма затвора и седла клапана. Так как у трёхходового клапана два затвора и два седла — расходных характеристик у него тоже две, первой обозначают характеристику по прямому ходу - (A-AB), а второй по перпендикулярному - (B-AB).

   Линейно/линейная. Суммарный расход через патрубок АВ постоянен лишь при авторитете клапана равном 1, что обеспечить практически невозможно. Работа трёхходового клапана с авторитетом равным 0.1 приведёт к колебаниям суммарного расхода при перемещении штока, в диапазоне от 100% до 180%. Поэтому клапаны с линейно/линейной характеристикой применяются в системах нечувствительных к колебаниям расхода, либо в системах с авторитетом клапана не менее 0.8.
   Логарифмическо/логарифмическая. Минимальные колебания суммарного расхода через патрубок AB в трёхходовых клапанах с логарифимическо/логарифмической расходной характеристикой наблюдаются при авторитете клапана равном 0.2. При этом, снижение авторитета, относительно указанного значения - увеличивает, а повышение – уменьшает суммарный расход через патрубок АВ. Колебание расхода в диапазоне авторитетов от 0.1 до 1 составляет от +15% до -55%.
   Логарифмическо/линейная. Трёхходовые клапаны с логарифмическо/линейной расходной характеристикой применяются если в циркуляционных кольцах проходящих через патрубки A-AB и B-AB необходимо регулирование по различным законам. Стабилизация расхода во время движения штока клапана происходит при авторитете равном 0.4. Колебание суммарного расхода через патрубок AB в диапазоне авторитетов от 0.1 до 1 составляет от +50% до -30%. Регулирующие клапаны с лограрифмическо/линейной расходной характеристикой получили широкое применение в узлах управления системами отопления и теплообменными аппаратами.

Расчёт авторитета:
   Авторитет трёхходового клапана равен отношению потерь напора на клапане к потерям напора на клапане и регулируемом участке. Значение авторитета для трёхходовых клапанов определяет диапазон колебания суммарного расхода через порт АB.
10% отклонение мгновенного расхода через порт AB во время движения штока обеспечивается при следующих значениях авторитета:
 A+ = (0.8-1.0) – для клапана с линейно/линейной характеристикой.
 A+ = (0.3-0.5) - для клапана с логарифмическо/линейной характеристикой.
 A+ = (0.1-0.2) - для клапана с логарифмическо/логарифмической характеристикой.

   Для трёхходовых клапанов авторитет определяется для каждого из двух циркуляционных колец проходящих через порты A-AB и B-AB.
Определив оптимальный диапазон авторитетов и расходную характеристику, определяют допустимый диапазон потерь давления на трёхходовом клапане и переходят к определению его пропускной способности.

Расчёт пропускной способности:
   Зависимость потерь напора на клапане от расхода через него, характеризуется коэффициентом пропускной способности Kvs. Значение Kvs численно равно расходу в м³/ч, через полностью открытый клапан, при котором потери напора на нём составят 1бар. Как правило, значение Kvs трёхходового клапана одинаково для хода A-AB и B-AB, но бывают клапаны и с различными значениями пропускной способности по каждому из ходов. Зная, что при изменении расхода в «n» раз потери напора на клапане изменяются в «n²» раз, не сложно определить требуемый Kvs регулирующего клапана подставив в уравнение расчётный расход и потери напора. Из номенклатуры подбирают трёхходовой клапан с ближайшим значением коэффициента пропускной способности к значению полученному в результате расчёта.

Подбор электропривода:
   Электропривод подбирается под ранее выбранный трёхходовой клапан. Электрические приводы рекомендуется выбирать из списка совместимых устройств, указанных в характеристиках клапана, при этом следует обратить внимание на:
  - Узлы стыковки привода и клапана должны быть совместимы.
  - Ход штока электропривода должен быть не менее хода штока клапана.
  -  В зависимости от инерционности регулируемой системы следует применять приводы с различной скоростью действия.
  - От усилия закрытия привода зависит максимальный перепад давления на клапане при котором привод сможет его закрыть.
  - Один и тот же электропривод обеспечивает перекрытие трёхходового клапана работающего на смешение и разделение потока, при разных перепадах давления.
 -  Напряжение питания и управляющий сигнал привода должны соответствовать напряжению питания и управляющему сигналу контроллера.
 Поворотные трёхходовые клапаны применяются с ротационными, а седельные с линейными электроприводами.

Расчёт на возможность возникновения кавитации:
   Кавитация – образование пузырьков пара в потоке воды проявляющееся при снижении давления в нём ниже давления насыщения водяного пара. Уравнением Бернулли описан эффект увеличения скорости потока и снижения давления в нём, возникающий при сужении проходного сечения. Проходное сечение между затвором и седлом трёхходового клапана является тем самым сужением, давление в котором может опуститься до давления насыщения, и местом наиболее вероятного образования кавитации. Пузырьки пара нестабильны, они резко появляются и также резко схлопываются, это приводит к выеданию частиц метала из затвора клапана, что неизбежно станет причиной его преждевременного износа. Кроме износа кавитация приводит к повышению шума при работе клапана.
Основные факторы, влияющие на возникновение кавитации:
 - Температура воды – чем она выше, тем большие вероятность возникновения кавитации.
 - Давление воды – перед регулирующим клапаном, чем оно выше, тем меньше вероятность возникновения кавитации.

   Допустимые потери давления – чем они выше, тем выше вероятность возникновения кавитации. Здесь следует отметить, что в положении затвора близком к закрытию дросселируемое давление на клапане стремиться к располагаемому давлению на регулируемом участке.

   Кавитационная характеристика трёхходового клапана – определяется особенностями дросселирующего элемента клапана. Коэффициент кавитации различен для различных типов регулирующих клапанов и должен указываться в их технических характеристиках, но так, как большинство производителей не указывают данную величину, в алгоритм расчёта заложен диапазон наиболее вероятных коэффициентов кавитации.
  В результате проверки на кавитацию может быть выдан следующий результат:
 «Нет» - кавитации точно не будет.
 «Возможна» – на клапанах некоторых конструкций возникновение кавитации возможно, рекомендуется изменить один из вышеописанных факторов влияния.
 «Есть» – кавитация точно будет, измените один из факторов влияющих на возникновение кавитации.

Расчёт на возникновение шума:
   Высокая скорость потока во входном патрубке трёхходового клапана может стать причиной высокого уровня шума. Для большинства помещений в которых устанавливаются регулирующие клапаны допустимый уровень шума составляет 35-40 dB(A) который соответствует скорости во входном патрубке клапана примерно 3м/c. Поэтому, при подборе трёхходового клапана не рекомендуется превышать выше указанной скорости.

Установка и монтаж трёхходового клапана

Правила установки трёхходовых клапанов:
  - До и после клапана следует установить манометры.
  - Перед трёхходовым клапаном должен быть установлен сетчатый фильтр.
  - Корпус не должен испытывать нагрузок кручения, растяжения, изгиба или сжатия.
  - Направление стрелки на корпусе должно совпадать с направлением потока среды в месте установки.
  - Для оптимального регулирования перед смешивающим трёхходовым клапаном необходимо дросселировать избыточный напор.
  - Муфтовую арматуру, в тепловых пунктах присоединённых к тепловым сетям, допускается устанавливать только по согласованию с теплоснабжающей организацией.
  - Установку трёхходового клапана следует выполнять на горизонтальном или вертикальном трубопроводе, таким образом, чтобы клапан не находился над электроприводом, если иное не оговорено инструкцией по монтажу.
  - Различные производители представляют различные данные, но в среднем, рекомендуется выдерживать прямые участки 5DN перед и 10DN после регулирующего клапана. В противном случае характеристики клапана могут отличаться от заявленных в техническом описании.

Последовательность паковки резьбового соединения

1. Взять прядь льняного волокна с таким количеством нитей, чтобы в скрученном состоянии её диаметр были примерно равен глубине резьбы на монтируемом элементе. Длина пряди должна обеспечивать количество подмотки в 1,5-2раза превосходящее число витков резьбы.
2. Отступив примерно 50-70 мм от начала пряди, следует слегка скрутить её, уложить в первый виток резьбы и удерживая её рукой, плотно намотать длинную ветвь пряди по часовой стрелке, укладывая её в каждый виток резьбы.
3. Дойдя до конца резьбы, продолжить намотку вторым слоем, перемещая витки к началу резьбы. Длина второго слоя намотки должна быть примерно равна 2/3 длины резьбы.
4. Оставшийся конец пряди (50-70мм) намотать аналогично по часовой стрелке, укладывая от конца резьбы к её началу.
5. Нанести слой герметика поверх подмотки.
6. Навернуть рукой сопрягаемые элементы. При правильной подмотке, монтируемый элемент должен завернуться на 1,5-2 оборота.
7. Гаечным ключом или динамометрическим продолжить наворачивание элемента. В случае, когда монтируемому элементу необходимо придать определённое положение, закончить наворачивание в необходимом для этого элемента положении.

Требования норм, касающиеся трёхходовых клапанов

   Ниже собраны требования норм и правил касающиеся подбора, монтажа и эксплуатации трёхходовых клапанов. Приведенный перечень нормативных требований не является исчерпывающим, и со временем будет расширяться. Выдержки взяты из нормативных документов регулирующих порядок проектирования, монтажа и эксплуатации инженерных систем жилых, общественных и административно бытовых зданий. В разделе не приведены требования норм и правил которые относятся к трёхходовым клапанам применяемым в промышленности и технологических установках.
ДБН В.2.2-15 Жилые здания

Пункт 5 — ДБН В.2.2-15 Жилые здания
Инженерное оборудование зданий

СНиП 2.04.05 Отопление вентиляция и кондиционирование

Пункт 3.15 — Глава 3 Отопление
Системы отопления следует проектировать с установкой автоматических регуляторов теплового потока на абонентском вводе тепловой сети или в местной котельной. Если планировка здания позволяет расчленить систему отопления на фасадные ветви, обогревающие помещения одной ориентации, то регуляторы теплового потока должны устанавливаться на каждой фасадной ветви.
В системах отопления зданий, строящихся в районах, где имеются или проектируются объединенные диспетчерские системы, следует предусматривать устройства для получения и передачи на диспетчерский пункт информации об основных параметрах системы отопления в объёмах, определяемых службой диспетчеризации.

Пункт 3.16 — Глава 3 Отопление

Системы отопления общественных и производственных зданий с фиксированной продолжительностью рабочего дня должны проектироваться с устройствами уменьшения теплового потока в нерабочее время.

ГОСТ 12.2.063-81 Общие требования безопасности. Арматура промышленная трубопроводная
ГОСТ 12893-83 Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия
ГОСТ 23866-87 Клапаны регулирующие односедельные, двухседельные и клеточные. Основные параметры
ГОСТ 24856-81 (ISO 6552-80) Арматура трубопроводная промышленная. Термины и определения
ГОСТ 4666-75 Маркировка и отличительная окраска. Арматура трубопроводная

 

 

 

Благодарность за предоставленные материалы:
http://www.ktto.com.ua

Трехходовые регулирующие клапаны TRV-3

Электрические приводы других производителей для трехходовых клапанов VF3

Электроприводы производства ООО "Завод Теплосила" для трехходовых клапанов TRV-3

Розничная ст-ть с НДС,

рос. руб

Электропривод AMV 25 +

адаптер (230В, 3-х поз., 1000 Н, 11 сек/мм, IP54) (Ду15-50 VF3)

Электропривод TSL-1600-1-25-230-IP67

(230В, 3-х поз., 1600 Н, 2,4/4/6/8 сек/мм, IP54) (Ду15-50 TRV-3)

30 498

Электропривод AMV 35 +

адаптер (230В, 3-х поз., 600 Н, 3 сек/мм, IP54) (Ду15-50 VF3)

Электропривод AMV 56 +

адаптер (230В, 3-х поз., 1500 Н, 4 сек/мм, IP54) (Ду65-80 VF3)

Электропривод TSL-2200-1-40-230-IP67

(230В, 3-х поз., 2200 Н, 2,4/4/6/8 сек/мм, IP54) (Ду65-80 TRV-3)

31 344

Электропривод AMV 435

(230В, 3-х поз., 400 Н, 7.5/15 сек/мм, IP54) (Ду15-80 VF3)

Электропривод TSL-1600-1-25-230-IP67

(230В, 3-х поз., 1600 Н, 2,4/4/6/8 сек/мм, IP54) (Ду15-50 TRV-3)

30 498

Электропривод TSL-2200-1-40-230-IP67

(230В, 3-х поз., 2200 Н, 2,4/4/6/8 сек/мм, IP54) (Ду65-80 TRV-3)

31 344

Электропривод AME 655

(230В, 3-х поз., 2000 Н, 2/6 сек/мм, IP54) (Ду100 VFM2)

Электропривод TSL-2200-1-40-230-IP67

(230В, 3-х поз., 2200 Н, 2,4/4/6/8 сек/мм, IP54) (Ду100 TRV-3)

31 344

Электропривод AMV 25SD

(с возвратной пружиной)+ адаптер (230В, 3-х поз., 450 Н, 15 сек/мм, IP54) (Ду15-50 VF3)

Электропривод TSL-1600-1R-25-230-IP67 с фунуцией безопасности

(230В, 3-х поз., 1600 Н, 2,4/4/6/8 сек/мм, IP54) (Ду15-50 TRV-3)

45 720

Электропривод AMV 25SU (с возвратной пружиной)+

адаптер (230В, 3-х поз., 450 Н, 15 сек/мм, IP54) (Ду15-50 VF3)

Электропривод AMV 438SU (с возвратной пружиной)

(230В, 3-х поз., 450 Н, 15 сек/мм, IP54) (Ду15-80 VF3)

Электропривод TSL-1600-1R-25-230-IP67 с фунуцией безопасности

(230В, 3-х поз., 1600 Н, 2,4/4/6/8 сек/мм, IP54) (Ду15-50 TRV-3)

45 720

Электропривод TSL-2200-1R-40-230-IP67 с функцией безопасности

(230В, 3-х поз., 2200 Н, 2,4/4/6/8 сек/мм, IP54) (Ду65-80 TRV-3)

46 320

Электропривод AME 658SD (с возвратной пружиной)

(230В, 3-х поз., 2000 Н, 2/6 сек/мм, IP54) (Ду65-150 VFM2)

Электропривод TSL-2200-1R-40-230-IP67 с функцией безопасности

(230В, 3-х поз., 2200 Н, 2,4/4/6/8 сек/мм, IP54) (Ду100 TRV-3)

46 320

Электропривод AME 658SU (с возвратной пружиной)

(230В, 3-х поз., 2000 Н, 2/6 сек/мм, IP54) (Ду65-150 VFM2)

Трехходовые регулирующие клапаны LDM (ЛДМ)

  • Главная
  • Трехходовые регулирующие вентили

Трехходовой регулирующий клапан имеет три патрубка для присоединения, которые расположены Т-образно. Основной задачей регулирующего клапана является смешение или разделение потоков среды. Таким образом, трехходовые регулирующие вентили делятся на смесительные и разделительные (клапан разделения).

Трехходовые регулирующие клапаны могут оснащаться электроприводами и пневмоприводами. В зависимости от материала корпуса и уплотнения трехходовые регулирующие клапаны могут применяться для различных сред: вода, пар, нефтепродукты, химически активные вещества.

Заказать оборудование Вы можете позвонив по телефону в Санкт-Петербурге +7 (812) 970 - 74 - 58 или Москве +7 (495) 984 - 06 - 19 или отправив нам сообщение по электронной почте [email protected]

Трехходовой регулирующий клапан RV111 Comar line

Номинальные диаметры: DN 15 до 40
Номинальное давление: PN16
Температура макс.: tmax = +150 °C
Пропускная способность Kvs: 0,16 до 25 м3/час
Материал корпуса: чугун
Присоединение: резьба, приварка, фланец
Среды: вода, хладагенты
Применение: системы ЖКХ, ИТП

Технические характеристики:

Трехходовой регулирующий клапан RV102/RV103

Номинальные диаметры: DN 15 до 50
Номинальное давление: PN16
Температура макс.: tmax = +150 °C
Пропускная способность Kvs: от 0,6 до 40 м3/час
Материал корпуса: бронза (резьба), чугун (фланец)
Присоединение: резьба, фланец
Среды: вода, хладагенты, воздух
Применение: системы ЖКХ, ИТП

Технические характеристики:

Трехходовой регулирующий клапан RV113 M

Номинальные диаметры: DN 50 до 150
Номинальное давление: PN16
Температура макс.: tmax = +150 °C
Пропускная способность Kvs: 40 до 360 м3/час
Материал корпуса: чугун
Присоединение: фланец
Среды: вода, хладагенты, воздух
Применение: системы ЖКХ, ИТП

Технические характеристики:

Трехходовой регулирующий клапан RV214

Номинальные диаметры: DN 15 до 300
Номинально е давление: PN16, PN25, PN40
Температура макс.: tmax = +300 °C
Пропускная способность Kvs: 1,6 до 1000 м3/час
Материал корпуса: высокопрочный чугун
Присоединение: фланец
Среды: вода, пар
Применение: системы ЖКХ, ИТП, ЦТП, технологические процессы.

Технические характеристики:

Трехходовой регулирующий клапан RV224

Номинальные диаметры: DN 15 до 300
Номинально е давление: PN16, PN25, PN40
Температура макс.: tmax = +500 °C
Пропускная способность Kvs: 1,6 до 1000 м3/час
Материал корпуса: литая сталь
Присоединение: фланец
Среды: вода, пар, воздух, агрессивные и взрывоопасные среды
Применение: системы ЖКХ, ИТП, ЦТП, нефтехимия, технологические процессы

Технические характеристики:

Трехходовой регулирующий клапан RV234

Номинальные диаметры: DN 15 до 300
Номинально е давление: PN16, PN25, PN40
Температура макс.: tmax = +400 °C
Пропускная способность Kvs: 1,6 до 1000 м3/час
Материал корпуса: нержавеющая сталь
Присоединение: фланец
Среды: вода, пар, воздух, агрессивные и взрывоопасные среды
Применение: системы ЖКХ, ИТП, ЦТП, нефтехимия, технологические процессы

Технические характеристики:

Наши специалисты ответят на все интересующие Вас вопросы и помогут подобрать трехходовой регулирующий клапан. Заказать оборудование Вы можете по телефону в Санкт-Петербурге или Москве.

Доставка регулирующих вентелей по России. Москва, Челябинск, Волгоград, Тольятти, Пермь, Саратов, Краснодар, Ижевск, Барнаул, Владивосток, Рязань, Пенза, Липецк, Тула и др.

На все двухходовые регулирующие клапаны, поставляемые нашей компанией действует гарантия от производителя. Высокое качество нашего оборудования подтверждено сертификатами качества,которые Вы можете посмотреть у нас на сайте,в разделе "Документация".

3-ходовые регулирующие клапаны или клапаны, не зависящие от давления?

Трехходовой регулирующий клапан перекрывает поток воды в одной трубе и открывает поток воды в другой трубе. В модулирующем или 3-точечном плавающем приложении клапан также может смешивать воду из двух разных труб в одну трубу или отводить воду из одной трубы в две разные трубы. Подключенный к системе автоматизации здания и термостатам, расположенным в каждой зоне, трехходовой клапан направляет воду для отопления или охлаждения через змеевик, если требуется нагрев или охлаждение.Если зона не нуждается в обогреве или охлаждении, поток через байпасную линию направляется в обратный трубопровод. Это означает, что расход останется прежним, если вы используете в системе 3-ходовые клапаны. Для сравнения, двухходовой клапан может остановить поток воды к змеевику, когда нет необходимости в нагреве или охлаждении. Это означает, что расход будет изменяться, если вы используете в системе 2-ходовые клапаны.

Исторически трехходовые клапаны использовались в насосных системах с постоянным расходом для поддержания постоянного расхода, независимо от того, требовалось ли нагревание / охлаждение.В большинстве систем сегодня используются двухходовые клапаны для систем с регулируемой скоростью, поскольку расход может колебаться при открытии и закрытии клапанов. Когда 2-ходовой клапан закрывается, перепад давления увеличивается, и насос замедляется (меньше расход), что позволяет экономить энергию.

Большинство экспертов согласны с тем, что насосные системы с переменным расходом предпочтительнее, потому что они могут сэкономить владельцам зданий значительные затраты на электроэнергию. Некоторые переключили свою систему постоянной скорости на регулируемую, но они не улавливают экономию энергии, потому что они оставляют свои 3-ходовые клапаны или устанавливают 2-ходовые клапаны и имеют проблемы с переполнением и недостаточным сливом.С 3-ходовыми клапанами система переменной скорости никогда не экономит энергию, потому что 3-ходовые клапаны поддерживают постоянный поток независимо от изменений нагрузки, а насос никогда не может снизить скорость. При установке простых 2-ходовых клапанов могут возникнуть условия перелива и недостаточного расхода во время запуска, а также при увеличении размеров клапанов, что также приводит к потере энергии насоса. Обе эти проблемы могут быть решены путем установки регулирующих клапанов, не зависящих от давления (PIC-V). PIC-V постоянно поддерживает правильный поток через каждый контур или змеевик, даже если давление в системе изменяется.Контур имеет точный расход, необходимый при запуске, при расчетной нагрузке и при пониженной нагрузке. Поток изменяется только тогда, когда требуется изменение системы управления.

Ни один другой регулирующий клапан не может обеспечить точный расход независимо от изменений давления. А если вы модернизируете свои 3-ходовые клапаны, выберите меньшую скорость потока для змеевика, чтобы обеспечить более высокий ΔT через змеевик. Этот уменьшенный поток означает, что насос может снизить скорость и сэкономить энергию.

Возникают проблемы, когда все 2-ходовые клапаны закрыты в системе с регулируемой скоростью:

  1. Насос может перегреться, если он продолжает работать при закрытых клапанах даже на минимальной скорости.
  2. Температура кондиционированной воды в коллекторах и удаленных стояках со временем станет температурой окружающей среды. Это означает, что когда в помещении в конечном итоге потребуется обогрев / охлаждение, возникнет задержка, поскольку свеже нагретая или охлажденная вода циркулирует по системе. Это может вызвать дискомфорт у пользователя и вызвать жалобы.

Поэтому рекомендуется при переходе с 3-ходовой системы на 2-ходовую систему оставлять наиболее удаленный 3-ходовой клапан на каждом стояке, чтобы охлаждающая / нагревающая вода могла рециркулировать, даже если все другие клапаны закрыты. .

Еще одна проблема, связанная с использованием 3-ходовых клапанов в любом типе применения, заключается в том, что они способствуют развитию синдрома низкого ΔT. Трехходовые клапаны перепускают кондиционированную нагретую / охлажденную воду в обратную линию. Температуры смешиваются, и ΔT на охладителе или бойлере снижается, поскольку подаваемая вода смешивается с возвратной.

Как работает в вашей системе регулирующий клапан, не зависящий от давления? PIC-V сочетает в себе диафрагму регулирования перепада давления с 2-ходовым регулирующим клапаном для обеспечения определенного расхода независимо от колебаний давления в системе.Клапан выполняет функцию балансировочного клапана и регулирующего клапана в одном блоке. Привод регулирует PIC-V до требуемого фиксированного расхода в зависимости от нагрузки или требований зоны, независимо от давления.

Когда зона удовлетворена, привод прекращает вращение, и теперь клапан настроен на оптимальный поток. Если давление в системе изменяется, внутренняя диафрагма регулирования давления компенсирует изменение давления и поддерживает постоянный расход без переключения привода. Поток не изменяется до тех пор, пока система управления не скажет приводу изменить положение клапана в зависимости от изменений нагрузки.Этот стабильный поток означает меньшую работу привода и, следовательно, увеличивает срок его службы.

Узнайте больше о трехходовых клапанах HVAC

В отрасли HVAC используются два типа трехходовых клапанов: смесительные клапаны и отводные клапаны. Во избежание недоразумений, связанных с терминологией, мы будем рассматривать смесительные клапаны с двумя входами и одним выходом, а отводные клапаны - с одним входом и двумя выходами.

Рисунок 1.

Многие назовут все трехходовые клапаны смесительными клапанами.Трехходовые клапаны также могут называться байпасными клапанами, клапанами постоянного потока и многими другими терминами.

Примечание. Неправильное использование одного для другого вызовет вибрацию, гидравлический удар, вибрацию и повреждение системы.

Смесительные клапаны чаще используются в области отопления, вентиляции и кондиционирования воздуха. Смесительные клапаны являются хорошими регулирующими клапанами, хотя их можно использовать как двухпозиционные клапаны, перенаправляя полный поток от одного или другого входа к общему выходу.

Клапаны переключающие обычно используются как двухпозиционные. Поток полностью отклоняется в ту или иную сторону. Вообще говоря, отводные клапаны не являются хорошими регулирующими клапанами, хотя некоторые производители клапанов вставляют определенные заглушки в трехходовые отводные клапаны, чтобы их можно было использовать для регулирования. Производители клапанов обычно указывают в своих каталогах, предназначен ли клапан для смешивания или отвода.

После того, как будет определено, с каким трехходовым клапаном вы имеете дело, смешивающим или переключающим, регулирующим или двухпозиционным, выбор должен происходить так же, как двухходовые клапаны.Найдите коэффициент CV. Как и раньше, вам нужно знать полный расход и DP.

Трехходовые клапаны используются во многих приложениях с замкнутой системой. Примеры включают:

1. Изменение температуры подачи

2. Изменение объема потока

3. Первичные / вторичные насосные системы

4. Двух- или четырехтрубные распределительные системы

Не существует «практических» способов определения расхода или доступного давления для трехходового клапана. Для определения расхода трехходового клапана необходимо знать все характеристики.

Рисунок 2.

На рис. 2 показан трехходовой клапан, изменяющий температуру потока. Обратите внимание, что количество воды в системе (показанной здесь змеевиком) не меняется. В этом случае желателен низкий DP. Используйте 20% доступного давления. В этом примере доступно 20 фунтов на квадратный дюйм. 4 фунта на квадратный дюйм будет DP, чтобы использовать, чтобы найти CV.

Рисунок 3.

На рисунке 3 мы меняем количество потока через змеевик. В этом случае желателен высокий перепад давления на клапане.Используйте 50% доступного давления, минимум 5 фунтов на квадратный дюйм, если возможно. В этом примере доступно 18 фунтов на квадратный дюйм, поэтому давление 9 фунтов на квадратный дюйм - это DP, который нужно использовать для определения CV. Если доступное давление упало ниже 10 фунтов на квадратный дюйм, скажем 8 фунтов на квадратный дюйм, используйте 5 фунтов на квадратный дюйм в качестве DP.

Как и в случае с двухходовыми клапанами, если выбранный трехходовой клапан меньше диаметра линии, не забывайте о коэффициенте FP. Измените размер клапана, применяя коэффициент FP, чтобы найти новое CV.

Для трехходовых клапанов, используемых в системах «охлажденная вода-горячая вода», с переключением «лето-зима», двухпозиционным смешиванием или отводом, используйте клапан размера линии.Это приложение с низким DP. Желателен полный сток.

Для определения статического давления, на которое должен быть рассчитан клапан, используется следующая формула:


Номинальное статическое давление (фунты на кв. Дюйм) = [(HFP + HT) + (HP - HF)] / 2,31

Где HFP = Давление заполнения в нижней точке системы в футах водяного столба.

HT = Расстояние клапана над нижней точкой системы.

л.с. = общий напор насоса в футах водяного столба.

And HF = Потери на трение в трубопроводе между клапаном и насосом в футах водяного столба.

К сожалению, не вся информация может быть известна для расчета номинального статического давления напора (SHPR). Для определения приближения SHPR можно использовать метод. Возьмите давление наполнения и добавьте давление напора самого большого насоса в системе. Убедитесь, что номинальное статическое давление корпуса клапана равно этой сумме или превышает ее. Вам нужны эти две части информации.

Номинальное давление закрытия для трехходовых клапанов в замкнутом контуре должно равняться или превышать общий перепад давления, который может возникнуть через любой порт, когда этот порт закрыт.

Рисунок 4.

На рисунке 4 максимальное давление, при котором клапан должен будет закрыться, будет равно сумме перепадов давления в змеевике, насосных участках змеевика и клапане с полным потоком от B к AB. Это потому, что, когда нет потока через байпас, от X до A, давления в X и A одинаковы. Максимальный перепад давления, при котором клапан должен закрыться, равен только перепаду давления от X к тому контуру (A или B), который имеет наибольшее сопротивление максимальному потоку плюс падение давления через клапан.

Рисунок 5.

На рисунке 5 ситуация такая же. Клапан должен закрываться при наибольшем падении давления от X до AB. К сожалению, в реальном мире определения размеров клапана, необходимость DP для проверки давления закрытия трехходового клапана почти никогда не известна. Обычно, можно даже сказать, к счастью, клапан, выбранный по расходу и перепаду давления, будет иметь достаточно высокие параметры закрытия, чтобы работать.

Трехходовые клапаны, используемые в градирнях, представляют особые проблемы.Мы уже имеем дело не с замкнутыми циклами, а с открытыми. Системы с открытым контуром - это системы, открытые для атмосферы в некоторой части системы.

Когда конденсатор находится на том же уровне или выше градирни, рекомендуется использовать трехходовой переключающий клапан в байпасной секции. Не рекомендуется использовать трехходовой смесительный клапан в точке A, поскольку он будет находиться на стороне всасывания насоса и создавать условия вакуума, а не поддерживать атмосферное давление. См. Рисунок 6.

Рисунок 6.

Когда конденсатор находится ниже уровня градирни, рекомендуется байпас с использованием двухходового клапана.

DP от A до B при полном потоке должен равняться напору C-D. См. Рисунок 7.

Рисунок 7.

Трехходовые регулирующие клапаны - Hydronics

Трехходовые клапаны обеспечивают переменный поток через змеевик, сохраняя при этом постоянный поток в системе.

Смесительные и переключающие трехходовые клапаны показаны на рисунках 1 .В смесительном клапане два входящих потока объединяются в один выходящий поток. В отводном клапане происходит обратное. Выходной порт смесительного клапана и входной порт на отводном клапане называются общим портом, обычно обозначаемым C (для общего) или иногда AB.

Рис. 1. Конфигурации смесительного (слева) и переключающего (справа) клапана

На рис. 2 Рис. 2 нижний порт смесительного клапана показан нормально открытым для общего порта COM.(открыт для общего, когда стебель поднят).

Рисунок 2. Трехходовой смесительный клапан

Этот порт обычно обозначается NO (нормально открытый), хотя иногда он обозначается буквой B (нижний порт). Другой порт обычно закрыт для общего и обычно обозначается NC (нормально закрытый), хотя иногда он обозначается A или U (верхний порт). Общая розетка обычно обозначается COM или OUT. Отводной клапан обозначен аналогичным образом.

На , рис. 3 , общий порт отводного клапана показан в том же месте, что и на смесительном клапане, сбоку.

Рисунок 3. Трехходовой переключающий клапан

У некоторых производителей клапан может быть спроектирован так, что общий порт является нижним портом, а вода выходит слева и справа. Обратите внимание, что, как и в случае двухходовых клапанов, заглушки для смесительного и отводного клапанов расположены так, чтобы избежать гидроудара (т. Е. Поток проходит под седлом клапана). Следовательно, важно, чтобы клапан был правильно подключен к трубопроводу и помечен в соответствии с направлением потока, и смесительный клапан не должен использоваться для отвода, или наоборот.

Смесительные клапаны дешевле переключающих клапанов и поэтому встречаются чаще. В большинстве случаев, когда требуются трехходовые клапаны, они расположены в смесительной конфигурации, но иногда требуется отводной клапан.

Более частое использование смесительных клапанов над отводными клапанами, по-видимому, является причиной того, что двухходовые клапаны традиционно размещаются на обратной стороне змеевика (где должен идти смесительный клапан), а не на стороне подачи (где может быть отводной клапан). ).С функциональной точки зрения не имеет значения, с какой стороны змеевика расположен двухходовой клапан. Двухходовые клапаны, расположенные на обратной стороне трубопровода змеевика, будут поддерживать давление нагнетания насоса на гидравлических змеевиках, чтобы обеспечить принудительный выпуск воздуха из возвратного коллектора змеевика. Кроме того, жидкость, проходящая через клапан на обратной стороне, сдерживается за счет потери / увеличения тепла через змеевик.

На рисунке 4 показаны схемы двух типичных трехходовых смесительных клапанов.

Рис. 4. Типовое устройство трехходового смесительного клапана

Обратите внимание на маркировку портов клапана; Важно, чтобы схемы управления были помечены таким образом, чтобы гарантировать, что клапан подключен к трубопроводу в желаемой конфигурации, чтобы он не смог попасть в нужное положение и должным образом реагировал на управляющее воздействие контроллера. Общий порт ориентирован таким образом, чтобы поток всегда возвращался к распределению возврата. В примере вверху , рис. 4 , клапан обычно закрыт для прохождения потока через змеевик.Если требуется нормально открытое расположение, метки портов на схеме можно просто поменять местами (метка NO будет показана на возвратном патрубке клапана). Однако, поскольку обычно открытый порт на реальном трехходовом смесительном клапане находится внизу, простое изменение обозначения схемы приводит к ошибкам в полевых условиях. Лучше переставить схему, как показано в нижней части Рис. 4 , так, чтобы порт NO был показан в правильном положении.

Обратите внимание на балансировочный клапан, показанный на байпасной линии змеевика на рис. 4 , рис. 4 .Хотя обычно он не является частью системы управления (и, как таковой, он обычно не показан на схемах управления), этот клапан, тем не менее, необходим для правильной работы водораспределительной системы, если только падение давления в змеевике не очень низкое. Клапан должен быть сбалансирован, чтобы соответствовать падению давления в змеевике, чтобы, когда клапан находится в байпасном положении, падение давления было таким же, как и путь через змеевик. Без клапана происходит короткое замыкание жидкости, и перепад давления между подачей и возвратом в системе падает, что может привести к нехватке других змеевиков в системе, которые требуют более высокого перепада давления.

Заглушки в трехходовых клапанах доступны в том же стиле, что и двухходовые клапаны, обычно линейные и равнопроцентные. Однако не все производители выпускают оба стиля во всех размерах, поэтому у дизайнера не всегда есть гибкость в выборе в рамках одной линии производителя. В некоторых редких случаях клапаны изготавливаются с двумя разными типами заглушек, что позволяет клапану вести себя линейно для одного порта и равнопроцентно для другого. Отводные клапаны, по-видимому, доступны в основном с равнопроцентными заглушками.Выбор стиля штекера обсуждается в следующем разделе.

Хотя трехходовые клапаны чаще всего используются там, где требуется постоянный поток жидкости, в действительности они не приведут к постоянному потоку независимо от того, какой тип заглушки выбран. Как отмечалось выше, балансировочный клапан можно использовать для обеспечения того, чтобы поток был одинаковым, когда поток проходит 100% через змеевик или байпас. Однако, когда клапан находится между этими двумя крайними значениями, поток всегда будет увеличиваться с линейной пробкой и, в меньшей степени, с равнопроцентной пробкой.Причина этого станет очевидной, если мы рассмотрим размер и выбор клапанов в следующем разделе.

Перед выбором и определением размеров необходимо рассмотреть еще одну характеристику поведения регулирующих клапанов. Регулирующие регулирующие клапаны обладают неотъемлемой рабочей характеристикой, называемой «коэффициентом диапазона». Коэффициент диапазона регулирующего клапана - это отношение максимального расхода к минимальному регулируемому расходу. Эта характеристика измеряется в лабораторных условиях только с постоянным дифференциалом, применяемым к клапану.Коэффициент диапазона 10: 1 показывает, что клапан может регулировать минимальный расход 10%.

Установленная способность того же клапана управлять малым расходом - это «коэффициент уменьшения». В реальной системе давление на клапане не остается постоянным. Обычно, когда клапан закрывается, перепад давления на клапане увеличивается. Отношение перепада перепада давления, когда клапан полностью открыт, к тому, когда он почти закрыт, называется его «авторитетом». Если бы давление осталось прежним, авторитет был бы P / P = 1.Однако, если давление увеличится в четыре раза, авторитет будет = 0,25. Коэффициент поворота клапана рассчитывается путем умножения коэффициента возможности собственного диапазона на квадратный корень из авторитета клапана. Следовательно, клапан, который имеет приличный диапазон (допустим, 20: 1), но плохой авторитет (скажем, 0,2), не будет иметь хорошей способности регулировать до малых потоков (диапазон регулирования 20 • √0,2 = 9: 1) и может быть только в состоянии обеспечить «двухпозиционный» контроль над значительной частью своего диапазона расхода.

Многие регулирующие клапаны HVAC шарового типа не имеют коэффициентов диапазона высокого диапазона; крупный производитель перечисляет значения от 6.От 5: 1 до 25: 1 для их диапазона шаровых клапанов от ½ дюйма до 6 дюймов. Однако наиболее характерные шаровые регулирующие клапаны имеют очень высокий коэффициент диапазона (обычно> 150: 1).

Модели потока для трехходового шарового клапана

Выберите подходящий трехходовой многоходовой шаровой кран для смешивания или отвода потока

Последнее обновление 9 ноября 2018 г.

Проточный трехходовой шаровой кран

Двухходовые и трехходовые шаровые краны являются наиболее распространенными типами шаровых кранов.Трехходовые шаровые краны особенно полезны, поскольку их можно настроить таким образом, чтобы упростить управление потоком газа и жидкости. Например, их можно использовать для перенаправления потока масла из одного резервуара в другой.

Наши онлайн-каталоги клапанов управления потоком и PDF-файлы предоставляют доступ к широкому спектру миниатюрных типов клапанов, типов соединений, материалов и размеров.

Краны шаровые трехходовые канистра

  • Отсечение или перекрытие потока
  • Переключение потока между двумя разными источниками
  • Объединить поток из двух разных источников
  • Альтернативный поток между двумя разными пунктами назначения
  • Перенаправить поток, идущий из одного источника в другой пункт назначения
  • Разделение потока из одного источника между двумя исходящими пунктами

В этом сообщении основное внимание уделяется основным конструктивным различиям между потоком L-образной (L-образный) и Т-образным (T-образным) потоками в трехходовых шаровых клапанах.Я также опишу некоторые способы, которыми положение ручки в сочетании с диапазоном поворота ручки используется для управления потоком через типичные конструкции трехходового шарового клапана.

В дополнение к электронной книге в формате PDF, содержащей эту статью, ISM также имеет новый связанный справочный ресурс. Это наша диаграмма режимов потока для трехходового шарового клапана .

Вид спереди типичного трехходового шарового клапана с ручкой, которая вращается параллельно плоскости портов клапана. Их также называют вертикальной версией, вертикальным типом, вертикальными отверстиями, вертикальными и вертикальными тройниковыми клапанами.

Вид спереди еще одного распространенного трехходового шарового крана. Он имеет ручку, которая поворачивается под прямым углом к ​​плоскости портов клапана. Их также называют вертикальной версией, вертикальным типом, вертикальными отверстиями, вертикальными и вертикальными тройниковыми клапанами.

Чем трехходовой шаровой кран отличается от двухходового шарового крана?

Двухходовые шаровые краны широко используются в качестве запорной арматуры для газов или жидкостей (сред), движущихся по закрытым трубным или трубопроводным системам.Это из-за их простоты и надежности. Двухходовые клапаны имеют два порта или отверстия, через которые труба или шланг подсоединяются к клапану. Шар в двухходовых шаровых кранах имеет одно прямое отверстие, через которое жидкость или газ (среда) проходят через клапан.

Поток через шаровой клапан со стандартным отверстием несколько ограничен, поскольку отверстие в шаре внутри клапана меньше диаметра труб, соединенных с портами клапана. Вариант для уменьшения или устранения сопротивления потоку через шаровой кран - использовать шаровой кран с полным проходом.

Узнайте больше о шаровых кранах с полным проходом и шаровых кранах со стандартным отверстием. В этом сообщении блога описываются различия между полнопроходными или полнопроходными шаровыми кранами и стандартными портовыми клапанами. Он также включает список часто задаваемых вопросов, в котором описаны некоторые основы конструкции шарового крана.

Модульные обратные клапаны

Мы подняли подпружиненные обратные клапаны на совершенно новый уровень. Комбинируйте британские и метрические соединения. Посмотреть видео.

Трехходовые шаровые краны имеют три порта или соединения для трубы.В общем, трехходовые клапаны могут решать более сложные задачи управления потоком, чем двухходовые клапаны. Это делает их полезными для многих типов приложений процессов.

Например, трехходовой шаровой кран одного типа может использоваться для смешивания очищенной воды из одного источника с концентратом сока из другого источника. Несколько иная конструкция трехходового клапана может перенаправлять поток топлива из одного бака в другой, в то же время имея возможность полностью перекрыть поток топлива, если это необходимо.

При выборе правильного трехходового шарового клапана важно как понимать основные варианты конструкции трехходового клапана, так и планировать, как эти клапаны будут использоваться.Во-первых, немного об основах.

Что такое трехходовой шаровой кран?

Трех-, четырех- и пятиходовые шаровые краны называются многоходовыми. Трехходовой шаровой кран - самый распространенный многоходовой шаровой кран. Трехходовой шаровой кран имеет три порта или отверстия, которые подключены к трубопроводу или трубке для прохождения потока газа или жидкости (среды). Эти порты обычно описываются как одно впускное и два выпускных порта или одно выпускное и два впускных порта в зависимости от направления потока через клапан.

Трехходовые шаровые краны популярны, потому что они являются экономичным и простым способом обеспечения как отсечки, так и управления направлением потока в одном корпусе клапана.

Шаровой кран - Узнайте о шаровых кранах с плавающей опорой и шаровыми кранами на цапфе на сайте HardHat Engineer
Хотя этот технический блог направлен на управление потоком большого диаметра и высокого давления, он содержит некоторую полезную и очень хорошо иллюстрированную информацию о трехходовой шаровой кран.

Управление потоком через трехходовой клапан осуществляется путем сочетания способа установки трубопровода, поворота ручки шара клапана и пути потока через шар клапана (отверстие шара или отверстие).

Используя правильный тип клапана и настройку, можно управлять потоком способами, которые соответствуют одному или нескольким различным требованиям процесса, например

  • Полностью перекрыть поток
  • Смешайте поток из двух разных источников
  • Перенаправить поток из одного пункта назначения в другой
  • Разделить поток из одного источника между двумя разными направлениями
  • Поочередно блокировать поток в одном направлении, позволяя потоку продолжаться в другом

Есть одно простое, но ключевое отличие внутренней конструкции, которое определяет, на что способен трехходовой шаровой кран.Это важное конструктивное отличие заключается в характере потока или форме канала через шар внутри клапана. Большинство трехходовых шаровых кранов имеют шарики клапана с формой потока, имеющей форму заглавной буквы L (L-образный поток, L-поток, L-образный канал, два направления) или заглавной буквы T (Т-образный поток, T-поток, T. -порт, три направления).

Я опишу основы трехходовых шаровых кранов с потоками как L-образной, так и T-образной формы, но сначала я опишу шаровые краны L-формы потока. Четкое понимание течения по L-образной схеме значительно упрощает понимание течения по Т-образной схеме.

Шарики клапана L-образной формы имеют проточные каналы в форме заглавной буквы L

Типичный шаровой клапан L-образной формы

Обратите внимание, что паз штока для поворота этого шара клапана находится сверху. Это означает, что шар предназначен для трехходового клапана горизонтального типа. Если он предназначен для клапана вертикального типа, прорезь под шток будет напротив одного из отверстий (отверстий для потока шара).

Схемы потока

л, иногда называемые шарами под углом 90 градусов, чаще всего используются для обеспечения потока из одного общего впускного отверстия в одно из двух разных выпускных отверстий.Вот почему трехходовые шаровые краны с L-образной схемой потока часто называют переключающими клапанами.

Что такое переключающий клапан?

Переключающий, селективный или направленный клапаны - это альтернативные названия, используемые для шаровых кранов L-образной формы. Это связано с тем, что эта конструкция клапана широко используется для отклонения или изменения потока, выходящего через один из двух различных выходов или портов клапана. Ручные трехходовые шаровые краны L-образной формы, используемые в качестве переключающих клапанов, обычно устанавливаются с нижним портом корпуса клапана в качестве общего или входного порта.

В этом трехходовом шаровом клапане с L-образной схемой потока доступны два пути потока: слева или справа.

Шаровые краны L-образной формы с ручками, которые могут поворачиваться на 90 градусов (четверть оборота ручки), также называются двухпозиционными клапанами. Они могут отклонять поток влево или вправо одним поворотом ручки на 90 градусов.

Серия PMBV - переключающие шаровые краны (спецификация) от ISM
Пластиковые трехходовые шаровые краны серии PMBV представляют собой типичные шаровые краны с L-образным отверстием, предназначенные для использования в качестве переключающих клапанов без положения отсечки.

Когда их рукояткам разрешен дополнительный поворот на 90 градусов, всего на 180 градусов (половина оборота рукоятки), они могут полностью остановить поток. Обычно их называют трехпозиционными клапанами.

Если поворот рукоятки не ограничен встроенными ограничителями рукоятки клапана, шаровой клапан с L-образной схемой потока также может поворачиваться либо на 270 градусов (три четверти поворота рукоятки), либо на 360 градусов (полный оборот на рукоять). Эта свобода вращения обеспечивает два возможных положения отключения.

Трехходовой шаровой кран в горизонтальном исполнении с L-образной схемой потока имеет два возможных положения отсечки.

У четырехпозиционного клапана эти два положения закрытия клапана разнесены только на 90 градусов или четверть оборота.

Большинство клапанов горизонтального типа L имеют ручки, которые могут поворачиваться на 180 градусов. Это предусматривает три варианта потока:

  • Левый поток
  • Правый поток
  • Отсечь или перекрыть поток

Опять же, этот тип трехходового шарового клапана с L-образной схемой потока обычно описывается как трехпозиционный клапан.

Вид спереди типичного трехходового шарового крана с L-образной схемой потока. Схема потока

Трехходовые шаровые краны с L-образной схемой вертикального типа имеют два возможных пути потока и два возможных положения выключения.

Для шарового клапана с L-образной схемой вертикального потока нижний или общий порт всегда открыт. Поворот ручки клапана на 180 градусов (пол-оборота) направляет поток влево или вправо (см. Предыдущие изображения).Однако, если клапан повернут только на 90 градусов (четверть оборота) в любом направлении, ручка будет обращена либо к передней, либо к задней части клапана. В этих положениях ручки поток через клапан перекрывается.

Многие клапаны L-образной формы вертикального типа имеют ручки, которые можно поворачивать только на 180 градусов или пол-оборота. Это обеспечивает все три варианта: левый поток, правый поток и одно положение выключения.

Серия BVPM - шаровые краны с внутренней резьбой NPT (спецификация) из ISM
Серия BVPM миниатюрных латунных клапанов вертикального типа включает трехходовые шаровые краны.Эти трехходовые клапаны представляют собой типичные шаровые краны с L-образным отверстием и поворотом на 180 градусов, предназначенные для использования в качестве переключающих клапанов плюс одно положение отсечки.

Серия BLV - шаровые краны с внутренней резьбой NPT (спецификация) из ISM
Серия BLV миниатюрных латунных клапанов вертикального типа включает трехходовые шаровые краны. Эти трехходовые клапаны представляют собой типичные шаровые краны с L-образным отверстием и поворотом на 180 градусов, предназначенные для использования в качестве переключающих клапанов плюс одно положение отсечки.

Серия PBV3 - 3-ходовые шаровые краны (спецификация) , Трехходовые шаровые краны серии PBV3 - монтаж на панели (спецификация) и Серия PBV3L - Большой 3-ходовой шар Клапаны (спецификация) от ISM
Эти пластмассовые миниатюрные клапаны вертикального типа представляют собой типичные шаровые клапаны с L-образным отверстием, вращающимся на 180 градусов, предназначенные для использования в качестве переключающих клапанов плюс одно положение отсечки.

Рассмотрим подробнее поток L-образной формы горизонтального типа.

В этом трехходовом шаровом клапане горизонтального типа с L-образной схемой потока положение рукоятки по умолчанию обеспечивает поток между общим отверстием клапана внизу и левым отверстием клапана.

Если ручка клапана повернута против часовой стрелки на 90 градусов, шар L-образного потока внутри клапана также повернется на 90 градусов против часовой стрелки. Затем вместо этого он направляет поток вправо.Теперь поток проходит между общим или нижним портом и правым портом.


Что такое двухпозиционные шаровые краны L-образной формы?

Здесь начинаются некоторые сложности. Стандартный трехходовой шаровой кран с L-образной схемой потока (см. Выше) часто ограничивается только этим поворотом ручки на 90 градусов. Этот очень простой трехходовой шаровой кран обычно называют двухпозиционным. Его еще называют дивертерным, переключающим или направляющим клапаном.

Почему ручки важны для трехходовых шаровых кранов?

Ограничения на угол поворота ручки шарового крана обеспечиваются какими-либо упорами ручки (красные стрелки).Обычно это продолжения рукоятки и верхней части корпуса клапана. Они действуют, препятствуя вращению ручки. Эти упоры предотвращают поворот ручки за пределы установленного диапазона движения.

Ручка-ограничитель, встроенная в этот клапан, и ее ручка (красные стрелки) мешают движению ручки клапана, ограничивая ее поворот на 90 градусов.

Трехпозиционные шаровые краны L-образной формы

Также доступны трехпозиционные трехходовые шаровые краны с L-образной схемой потока.У них есть ограничение поворота ручки на 180 градусов.

В такой конструкции положение ручки могло бы начинаться с свободного пути потока между нижним портом и левым портом (положение 1). Поворот ручки клапана на 90 градусов против часовой стрелки во второе положение по-прежнему позволяет потоку проходить через клапан, но на этот раз поток проходит между нижним и правым портами.

Поворот клапана еще на 90 градусов против часовой стрелки, всего 180 градусов (положение 3), перекрывает весь поток через клапан.Такие шаровые краны с L-образной схемой потока обычно называют трехпозиционными клапанами: исходное положение, поворот на 90 градусов и поворот на 180 градусов.

Трехходовой шаровой кран L-образной формы с поворотом на 180 градусов (трехпозиционный) имеет два пути потока и одно положение отсечки.

Четырехпозиционные шаровые краны L-образной формы

Когда ручка поворачивает шар клапана на 90 градусов против часовой стрелки (положение 2), путь потока изменяется, и теперь поток может проходить между нижним общим портом и правым портом.

Поворот ручки еще на 90 градусов против часовой стрелки (положение 3), на 180 градусов от исходного положения, поворачивает шар клапана в положение, при котором поток между любыми портами клапана невозможен, и этот клапан теперь «выключен».

Если рукоятку можно повернуть еще на 90 градусов против часовой стрелки (положение 4), всего 270 градусов, шар клапана все равно не будет пропускать поток, и клапан все равно будет закрыт.

Поворот ручки этого клапана еще на 90 градусов против часовой стрелки, всего 360 градусов, возвращает его в исходное начальное положение.Поток снова может проходить через клапан между нижним общим портом и левым портом.

В целом шаровые краны трехходовые описываются по их характеристикам:

  • Схемы течения (L-образная или Т-образная схема потока)
  • Ориентация ручки (горизонтальная или вертикальная)
  • Сколько поворотов на 90 градусов или положений позволяет ручка

Это типичные варианты положения рукоятки, указанные в описании клапана:

  • Два положения (90 градусов)
  • Три положения (180 градусов)
  • Четыре позиции (270 или 360 градусов)

Для многих шаровых кранов L-образной формы обычно обеспечивается дополнительная гибкость, позволяющая перемещать ручку.У этих клапанов есть ручки, которые можно снять со штока клапана и затем снова прикрепить в другом исходном положении.

Далее я хотел бы описать основы трехходового шарового крана Т-образной формы.

Пути потока для шариков Т-образной формы имеют форму заглавной буквы T

Обычный шаровой клапан с Т-образным профилем

Обратите внимание, что паз штока для поворота этого шара клапана находится сверху. Это означает, что шар предназначен для трехходового клапана горизонтального типа. Если бы он был предназначен для клапана вертикального типа, паз штока был бы напротив дна или общего отверстия.

Шарики с Т-образной схемой потока, иногда называемые шарами с углом поворота 180 градусов, широко используются для объединения двух входных потоков и их объединения для выхода через одно общее выходное отверстие. В зависимости от требований процесса возможно и обратное. То есть разделите поток, поступающий из одного общего порта, на два исходящих потока, каждый из которых выходит из клапана через другой порт клапана.

Клапаны потока

Т-образной формы не ограничиваются только разделением или разделением потока. Они также могут действовать как клапаны потока L-образной формы и перенаправлять поток от одного выпускного отверстия к другому.

Как и клапаны L-образной формы, проточные клапаны T-образной формы изменяют путь потока с помощью поворота ручки на четверть. В зависимости от допустимого диапазона движения рукоятки они могут обеспечивать отводной поток, смешивание или разделение потока и прямоточный поток.

В одном важном отношении шаровые краны с Т-образным профилем сильно отличаются от шаровых кранов с L-образным профилем. Обычные проточные клапаны Т-образной формы не могут обеспечить управление отсечкой. Они могут либо ограничить поток к любым двум из трех портов клапана, либо позволить потоку через все три порта клапана одновременно.Вот почему шаровые краны с Т-образной схемой потока иногда называют смесительными клапанами.

Что такое смесительный клапан?

Смесительные клапаны - это альтернативные названия, используемые для шаровых кранов с Т-образным профилем. Это связано с тем, что эта конструкция клапана широко используется для смешивания или объединения потоков, поступающих из двух разных источников. Обычные ручные трехходовые шаровые краны с Т-образным профилем, используемые в качестве смесительных клапанов, обычно устанавливаются с нижним портом корпуса клапана в качестве общего выходного порта.

Как и в шаровых клапанах с L-образной схемой потока, каждый поворот ручки на 90 градусов изменяет путь потока через клапан.Как и в случае клапанов L-образной формы, повороты рукоятки могут быть ограничены конструкцией с использованием упоров рукоятки.

Трехходовой шаровой кран горизонтального типа с Т-образной схемой потока имеет четыре возможных пути потока.

Обратите внимание, что каждое изменение схемы потока слева направо представляет собой поворот ручки на 90 градусов против часовой стрелки. Каждый поворот ручки вызывает соответствующий поворот шара клапана на 90 градусов. Это изменяет путь потока через клапан.

Т-образные шаровые проходы для трехходовых шаровых кранов вертикального типа

Шаровой кран с Т-образным профилем вертикального типа немного отличается от клапанов горизонтального типа.У вертикальных Т-образных клапанов нижний или общий порт всегда открыт. Поворот ручки клапана на 180 градусов не изменяет путь потока. Однако, если клапан поворачивается только на 90 градусов в любом направлении, когда ручка обращена либо к передней, либо к задней части клапана, поток перекрывается.

Загрузите бесплатную PDF-файл с диаграммой потоков для трехходовых шаровых кранов ISM.

Типичный трехходовой шаровой кран с Т-образной схемой потока Типичный режим потока

Трехходовые шаровые краны с Т-образным профилем вертикального типа имеют один возможный путь потока и одно возможное положение выключения.Начальное положение ручки находится слева. Слева направо каждое изображение представляет собой поворот ручки клапана на 90 градусов против часовой стрелки.

Большинство клапанов вертикального типа Т-образной формы имеют ручки, которые могут поворачиваться только на 90 градусов (одно положение) или 180 градусов (два положения). Это обеспечивает оба варианта потока:

  • Отсечка потока
  • Поток между всеми тремя портами

Т-образные проточные клапаны вертикального типа иногда называют клапанами с тройниковым отверстием или клапанами с шариками с тройниковым отверстием.

Общие области применения шарового клапана с L-образным отверстием:

Переключающие клапаны, запорные клапаны, байпасные клапаны, переключающие клапаны, распределители

  • Перенаправить поток из одного накопительного резервуара в другой
  • Изменить источник потока с одного насоса на другой
  • Изменить источник потока с одного резервуара на другой
  • Отвод потока от чиллера или нагревателя для удовлетворения сезонного спроса
  • Отключить весь поток, сохраняя возможность выбора между двумя направлениями потока или двумя источниками потока

Общие области применения шара с Т-образным отверстием:

Пробоотборные клапаны, продувочные клапаны, смесительные клапаны, байпасные клапаны, клапаны постоянного потока

  • Объединить поток из двух разных источников
  • Разделение потока между двумя разными направлениями
  • Альтернативный поток между двумя разными источниками
  • Дать возможность смешаться потоку из двух разных источников
  • Альтернативный поток между двумя разными пунктами назначения

Заключение

Обычно трехходовые шаровые краны описываются на основе их режимов потока (L-образный или T-образный поток), ориентации ручки (горизонтальный тип или вертикальный тип) и количества поворотов на 90 градусов, на которое ручка может поворачиваться:

  • Два положения (90 градусов)
  • Три положения (180 градусов)
  • Четыре позиции (270 или 360 градусов)

В зависимости от того, как просверлен шар клапана, и конфигурации трубопровода, поток газа и жидкости может быть отведен, смешан, заблокирован в одном направлении или полностью перекрыт.Многопортовые клапаны экономят место и позволяют отказаться от лишнего тройника и клапана. Понимание основных вариантов конструкции трехходового шарового крана упрощает выбор правильного трехходового клапана и упрощает планирование его установки.

Другие сообщения блога по теме

Миниатюрные шаровые краны: пластик, латунь или нержавеющая сталь?
Обзор того, что важно при выборе материала корпуса шарового крана. Температура, давление и коррозионная стойкость являются ключевыми вопросами, когда выбирают между пластиком и металлом.Когда металл - это определенно лучший выбор, наиболее распространенными металлами корпуса мини-шарового крана являются латунь и нержавеющая сталь. У каждого есть свои плюсы и минусы.

Прессованные, кованые или холоднотянутые латуни для миниатюрных клапанов
Обзор формования, обработки и формы латуни для изготовления миниатюрных шаровых и обратных клапанов. Латунь - отличный выбор материала для миниатюрных клапанов. Узнайте больше о том, почему латунь является таким полезным металлом для изготовления клапанов.В этом посте также рассматриваются некоторые из основных методов промышленной формовки латуни.

Как ISM может помочь вам найти правильный миниатюрный клапан для вашего приложения

Персонализированное обслуживание клиентов и ресурсы, доступные на веб-сайте ISM, могут оказаться большим подспорьем при выборе клапана. Доступные онлайн-ресурсы включают справочные руководства по химической совместимости, габаритные чертежи и спецификации продуктов. Наши онлайн-каталоги клапанов управления потоком и PDF-файлы предоставляют доступ к широкому спектру миниатюрных типов клапанов, типов соединений, материалов и размеров.

Об авторе

Стивен К. Уильямс, бакалавр наук, технический писатель и специалист по входящему маркетингу в Industrial Specialties Manufacturing (ISM), поставщику миниатюрных пневматических, вакуумных и компоненты гидравлической системы для OEM-производителей и дистрибьюторов по всему миру. Он пишет на технические темы, связанные с миниатюрными пневматическими и жидкостными компонентами, а также на темы, представляющие общий интерес для ISM.


«Вернуться на главную страницу блога

% PDF-1.4 % 605 0 объект > эндобдж xref 605 86 0000000016 00000 н. 0000002664 00000 н. 0000002904 00000 н. 0000002931 00000 н. 0000002978 00000 н. 0000003013 00000 н. 0000003231 00000 н. 0000003310 00000 н. 0000003387 00000 н. 0000003466 00000 н. 0000003544 00000 н. 0000003622 00000 н. 0000003700 00000 н. 0000003778 00000 н. 0000003855 00000 н. 0000004075 00000 н. 0000004676 00000 н. 0000004810 00000 н. 0000004858 00000 н. 0000005081 00000 н. 0000005387 00000 н. 0000005465 00000 н. 0000006344 00000 п. 0000006795 00000 н. 0000007024 00000 н. 0000007878 00000 н. 0000008733 00000 н. 0000009619 00000 н. 0000010474 00000 п. 0000011369 00000 п. 0000011760 00000 п. 0000011797 00000 п. 0000012660 00000 п. 0000024205 00000 п. 0000024849 00000 п. 0000027543 00000 п. 0000031692 00000 п. 0000031924 00000 п. 0000032145 00000 п. 0000032999 00000 н. 0000039000 00000 н. 0000039240 00000 п. 0000039298 00000 п. 0000039538 00000 п. 0000039725 00000 п. 0000039843 00000 п. 0000039981 00000 п. 0000040146 00000 п. 0000040293 00000 п. 0000040511 00000 п. 0000040663 00000 п. 0000040808 00000 п. 0000040959 00000 п. 0000041022 00000 п. 0000041165 00000 п. 0000041476 00000 п. 0000041643 00000 п. 0000041758 00000 п. 0000041873 00000 п. 0000042016 00000 н. 0000042187 00000 п. 0000042303 00000 п. 0000042451 00000 п. 0000042618 00000 п. 0000042738 00000 п. 0000042866 00000 п. 0000042997 00000 н. 0000043126 00000 п. 0000043223 00000 п. 0000043327 00000 п. 0000043472 00000 п. 0000043607 00000 п. 0000043811 00000 п. 0000044013 00000 п. 0000044127 00000 п. 0000044206 00000 п. 0000044358 00000 п. 0000044451 00000 п. 0000044616 00000 п. 0000044818 00000 п. | Zqn] mL'D (vxAH; Wb + ~.s8z-UC : `ݱ e TPi8

Трехходовые шаровые краны для продажи через Интернет

Среди множества типов шаровых кранов трехходовые шаровые краны являются эффективным решением для смешивания, отвода и выбора приложений.

Valworx предлагает широкий выбор 3-ходовых клапанов, поставляя продукцию, соответствующую высоким стандартам качества, производительности и поставки наших клиентов.

Трехходовые клапаны предназначены для смешивания, отвода и выбора различных сред. Эти компоненты подключаются к трубкам или трубам для управления потоком жидкостей или газов.Как следует из названия, трехходовые шаровые краны имеют три порта. Эти клапаны различаются по составу на входе и выходе в зависимости от применения клапана:

Смесительные клапаны: Объедините два потока жидкости в один.

Отводные клапаны: Отводят жидкости к одному из двух выходных портов.

Выбор клапанов: Забирает поступающую жидкость из одного из двух портов и перемещает ее через выходной порт.

Вы можете управлять 3-ходовыми клапанами вручную с помощью рычага, используемого для открытия и закрытия желаемых каналов, или вы можете управлять ими с помощью электрических или пневматических приводных двигателей для автоматической работы.

Типы 3-ходовых клапанов для продажи в Интернете

Клапаны с Т-образным и L-образным отверстиями указывают конструкцию отверстия и путь потока среды. Поскольку порты клапана могут быть расположены по-разному, важно знать конструкцию отверстия, чтобы обеспечить возможность желаемого потока среды.

Тройник

Трехходовые клапаны с Т-образным отверстием оснащены шаром с тремя отверстиями в Т-образной схеме. Эти универсальные клапаны подходят для выбора, переключения и смешивания режимов в зависимости от их настроек:

  • Путь потока T1 (левое смешивание) : Среда входит слева и протекает через клапан, смешивая все порты в позиции два, пока она не отклонится влево и не выйдет через передний порт позиции два.
  • Путь потока T2 (левый отводящий клапан) : Среда входит слева и движется через клапан в положении один, пока не будет отводиться влево из переднего порта положения два.
  • Путь потока T3 (правый дивертер) : Среда входит справа и проходит через клапан в позиции два, отклоняясь вправо и выходя из переднего порта позиции один.
  • Путь потока T4 (правое смешивание) : Среда входит справа и проходит через клапан, смешивая все порты в позиции один, отклоняясь вправо и выходя через передний порт позиции два.

Т-образные клапаны всегда имеют активный путь прохождения жидкости независимо от настройки, то есть они всегда открыты и никогда не могут быть полностью закрыты.

L-порт

L-образные отверстия - это клапаны с двумя отверстиями, просверленными в шаре под углом 90 градусов для перемещения жидкости из нескольких источников. Эти 3-ходовые шаровые краны напоминают L-образную форму и используются для отвода и выбора приложений, но не работают как смесительные клапаны. У них есть две настройки для перенаправления потока жидкости вправо или влево.

Привод 3-ходового клапана

Клапаны Valworx поставляются со встроенным креплением для легкого крепления к приводу клапана. (Для получения грунтовки по клапанам с электроприводом нажмите здесь ). Стандартная настройка клапана зависит от типа привода.

ПРИМЕНЕНИЕ 3-ХОДОВЫХ КЛАПАНОВ

Поскольку 3-ходовые шаровые краны надежны, удобны в использовании и обеспечивают длительный срок службы, эти устройства являются распространенным типом многопортовых клапанов.Трехходовые клапаны представляют собой простые и экономичные средства обеспечения отсечки и управления направлением потока в одном корпусе клапана, и они универсальны для использования во многих областях, включая:

  • Паровой сервис
  • Системы воздуха, пара и газа
  • Управление технологическим потоком

КУПИТЬ 3-ХОДОВЫЕ ШАРОВЫЕ КЛАПАНЫ У VALWORX СЕГОДНЯ

Вы можете найти 3-ходовые клапаны для продажи в Интернете на сайте Valworx. Мы производим, тестируем и отправляем клапаны с приводом в тот же день, когда вы их заказываете, обеспечивая клиентам быстрый и эффективный заказ и доставку.

Добавьте наши 3-ходовые клапаны в корзину сегодня или свяжитесь с нами для получения дополнительной информации о наших продуктах.

Для получения дополнительной информации о трехходовых шаровых кранах нажмите здесь для ProTips: 3-ходовые шаровые краны.

% PDF-1.4 % 583 0 объект > эндобдж xref 583 80 0000000016 00000 н. 0000002691 00000 н. 0000002838 00000 н. 0000003411 00000 н. 0000003543 00000 н. 0000004046 00000 н. 0000004313 00000 н. 0000004908 00000 н. 0000005347 00000 п. 0000005755 00000 н. 0000006217 00000 н. 0000006701 00000 п. 0000007295 00000 н. 0000007409 00000 н. 0000007521 00000 н. 0000007770 00000 н. 0000008025 00000 н. 0000008472 00000 н. 0000008728 00000 н. 0000009230 00000 н. 0000009257 00000 н. 0000010117 00000 п. 0000010303 00000 п. 0000010416 00000 п. 0000011217 00000 п. 0000011354 00000 п. 0000011824 00000 п. 0000011851 00000 п. 0000012497 00000 п. 0000012636 00000 п. 0000012663 00000 п. 0000013105 00000 п. 0000013816 00000 п. 0000014220 00000 п. 0000014944 00000 п. 0000015724 00000 п. 0000016508 00000 п. 0000017101 00000 п. 0000017451 00000 п. 0000018161 00000 п. 0000018231 00000 п. 0000018327 00000 п. 0000038832 00000 п. 0000039185 00000 п. 0000039255 00000 п. 0000039352 00000 п. 0000039623 00000 п. 0000063692 00000 п. 0000064022 00000 п. 0000064092 00000 п. 0000085926 00000 п. 0000086029 00000 п. 0000121533 00000 н. 0000136973 00000 н. 0000152504 00000 н. 0000156438 00000 н. 0000185562 00000 н. 0000210065 00000 н. 0000210441 00000 п. 0000210826 00000 н. 0000211095 00000 н. 0000211468 00000 н. 0000211830 00000 н. 0000212204 00000 н. 0000212467 00000 н. 0000212854 00000 н. 0000213218 00000 н. 0000228332 00000 н. 0000228601 00000 н. 0000228898 00000 н. 0000248047 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх